Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #32 Mar 07 2023 11:55:23
%S 0,1,2,3,4,5,6,7,8,9,0,1,1,1,2,1,3,1,4,1,5,1,6,1,7,1,8,1,9,1,0,2,1,2,
%T 2,2,3,2,4,2,5,2,6,2,7,2,8,2,9,2,0,3,1,3,2,3,3,3,4,3,5,3,6,3,7,3,8,3,
%U 9,3,0,4,1,4,2,4,3,4,4,4,5,4,6,4,7,4,8,4,9,4,0
%N Triangle T(n,k): write n in base 10, reverse order of digits.
%C The length of n-th row is given in A055642(n). - _Reinhard Zumkeller_, Jul 04 2012
%C According to the formula for T(n,1), columns are numbered starting with 1. One might also number columns starting with the offset 0, as to have the coefficient of 10^k in column k. - _M. F. Hasler_, Jul 21 2013
%H Reinhard Zumkeller, <a href="/A031298/b031298.txt">Rows n = 0..2500 of triangle, flattened</a>
%F T(n,1) = A010879(n); T(n,A055642(n)) = A000030(n). - _Reinhard Zumkeller_, Jul 04 2012
%t Table[Reverse[IntegerDigits[n]],{n,0,50}]//Flatten (* _Harvey P. Dale_, Mar 07 2023 *)
%o (Haskell)
%o a031298 n k = a031298_tabf !! n !! k
%o a031298_row n = a031298_tabf !! n
%o a031298_tabf = iterate succ [0] where
%o succ [] = [1]
%o succ (9:ds) = 0 : succ ds
%o succ (d:ds) = (d + 1) : ds
%o -- _Reinhard Zumkeller_, Jul 04 2012
%o (PARI) T(n,k)=n\10^(k-1)%10 \\ _M. F. Hasler_, Jul 21 2013
%Y Cf. A030308, A030341, A030386, A031235, A030567, A031007, A031045, A031087 for the base-2 to base-9 analogs.
%K nonn,base,tabf,less,look
%O 0,3
%A _Clark Kimberling_
%E Initial 0 and better name by _Philippe Deléham_, Oct 20 2011
%E Edited by _M. F. Hasler_, Jul 21 2013