login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A231675
a(n) = Sum_{i=0..n} digsum_6(i)^4, where digsum_6(i) = A053827(i).
5
0, 1, 17, 98, 354, 979, 980, 996, 1077, 1333, 1958, 3254, 3270, 3351, 3607, 4232, 5528, 7929, 8010, 8266, 8891, 10187, 12588, 16684, 16940, 17565, 18861, 21262, 25358, 31919, 32544, 33840, 36241, 40337, 46898, 56898, 56899, 56915, 56996, 57252, 57877, 59173, 59189, 59270, 59526, 60151, 61447, 63848, 63929, 64185, 64810, 66106, 68507, 72603, 72859, 73484, 74780, 77181
OFFSET
0,3
REFERENCES
Grabner, P. J.; Kirschenhofer, P.; Prodinger, H.; Tichy, R. F.; On the moments of the sum-of-digits function. Applications of Fibonacci numbers, Vol. 5 (St. Andrews, 1992), 263-271, Kluwer Acad. Publ., Dordrecht, 1993.
LINKS
J. Coquet, Power sums of digital sums, J. Number Theory 22 (1986), no. 2, 161-176.
J.-L. Mauclaire and Leo Murata, On q-additive functions, I. Proc. Japan Acad. Ser. A Math. Sci. 59 (1983), no. 6, 274-276.
J.-L. Mauclaire and Leo Murata, On q-additive functions, II. Proc. Japan Acad. Ser. A Math. Sci. 59 (1983), no. 9, 441-444.
J. R. Trollope, An explicit expression for binary digital sums, Math. Mag. 41 1968 21-25.
MATHEMATICA
Accumulate[f[n_]:= n - 5 Sum[Floor[n/6^k], {k, n}]; Array[f, 100, 0]^4] (* Vincenzo Librandi, Sep 04 2016 *)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
N. J. A. Sloane, Nov 13 2013
STATUS
approved