login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A231679
a(n) = Sum_{i=0..n} digsum_7(i)^4, where digsum_7(i) = A053828(i).
5
0, 1, 17, 98, 354, 979, 2275, 2276, 2292, 2373, 2629, 3254, 4550, 6951, 6967, 7048, 7304, 7929, 9225, 11626, 15722, 15803, 16059, 16684, 17980, 20381, 24477, 31038, 31294, 31919, 33215, 35616, 39712, 46273, 56273, 56898, 58194, 60595, 64691, 71252, 81252, 95893, 97189, 99590, 103686, 110247, 120247, 134888, 155624, 155625, 155641, 155722, 155978, 156603, 157899, 160300
OFFSET
0,3
LINKS
Jean Coquet, Power sums of digital sums, J. Number Theory 22 (1986), no. 2, 161-176.
P. J. Grabner, P. Kirschenhofer, H. Prodinger, R. F. Tichy, On the moments of the sum-of-digits function, PDF, Applications of Fibonacci numbers, Vol. 5 (St. Andrews, 1992), 263-271, Kluwer Acad. Publ., Dordrecht, 1993.
J.-L. Mauclaire, Leo Murata, On q-additive functions. I, Proc. Japan Acad. Ser. A Math. Sci. 59 (1983), no. 6, 274-276.
J.-L. Mauclaire, Leo Murata, On q-additive functions. II, Proc. Japan Acad. Ser. A Math. Sci. 59 (1983), no. 9, 441-444.
J. R. Trollope, An explicit expression for binary digital sums, Math. Mag. 41 1968 21-25.
EXAMPLE
a(9): we write 0 though 9 in base 7: 0, 1, 2, ...,6, 10, 11, 12; take sums of those digits: 0, 1, 2, ..., 6, 1, 2, 3; raise them to 4th power: 0, 1, 16, ..., 1296, 1, 16, 81; total is 2373 = a(9). - N. J. A. Sloane, Feb 27 2023
MATHEMATICA
Accumulate[Table[Total[IntegerDigits[n, 7]]^4, {n, 0, 60}]] (* Harvey P. Dale, Feb 28 2023 *)
PROG
(PARI) a(n) = sum(i=0, n, sumdigits(i, 7)^4);
CROSSREFS
KEYWORD
nonn,base
AUTHOR
N. J. A. Sloane, Nov 13 2013
STATUS
approved