login
A231677
a(n) = Sum_{i=0..n} digsum_7(i)^2, where digsum_7(i) = A053828(i).
3
0, 1, 5, 14, 30, 55, 91, 92, 96, 105, 121, 146, 182, 231, 235, 244, 260, 285, 321, 370, 434, 443, 459, 484, 520, 569, 633, 714, 730, 755, 791, 840, 904, 985, 1085, 1110, 1146, 1195, 1259, 1340, 1440, 1561, 1597, 1646, 1710, 1791, 1891, 2012, 2156, 2157, 2161, 2170, 2186, 2211, 2247, 2296, 2300, 2309, 2325, 2350, 2386, 2435, 2499, 2508, 2524, 2549, 2585, 2634, 2698, 2779
OFFSET
0,3
LINKS
Jean Coquet, Power sums of digital sums, J. Number Theory 22 (1986), no. 2, 161-176.
P. J. Grabner, P. Kirschenhofer, H. Prodinger, R. F. Tichy, On the moments of the sum-of-digits function, PDF, Applications of Fibonacci numbers, Vol. 5 (St. Andrews, 1992), 263-271, Kluwer Acad. Publ., Dordrecht, 1993.
J.-L. Mauclaire, Leo Murata, On q-additive functions. I, Proc. Japan Acad. Ser. A Math. Sci. 59 (1983), no. 6, 274-276.
J.-L. Mauclaire, Leo Murata, On q-additive functions. II, Proc. Japan Acad. Ser. A Math. Sci. 59 (1983), no. 9, 441-444.
J. R. Trollope, An explicit expression for binary digital sums, Math. Mag. 41 1968 21-25.
PROG
(PARI) a(n) = sum(i=0, n, sumdigits(i, 7)^2); \\ Michel Marcus, Sep 20 2017
CROSSREFS
KEYWORD
nonn,base
AUTHOR
N. J. A. Sloane, Nov 13 2013
STATUS
approved