login
A231673
a(n) = Sum_{i=0..n} digsum_6(i)^2, where digsum_6(i) = A053827(i).
5
0, 1, 5, 14, 30, 55, 56, 60, 69, 85, 110, 146, 150, 159, 175, 200, 236, 285, 294, 310, 335, 371, 420, 484, 500, 525, 561, 610, 674, 755, 780, 816, 865, 929, 1010, 1110, 1111, 1115, 1124, 1140, 1165, 1201, 1205, 1214, 1230, 1255, 1291, 1340, 1349, 1365, 1390, 1426, 1475, 1539, 1555, 1580, 1616, 1665, 1729, 1810, 1835, 1871, 1920, 1984, 2065, 2165, 2201, 2250, 2314, 2395
OFFSET
0,3
REFERENCES
Grabner, P. J.; Kirschenhofer, P.; Prodinger, H.; Tichy, R. F.; On the moments of the sum-of-digits function. Applications of Fibonacci numbers, Vol. 5 (St. Andrews, 1992), 263-271, Kluwer Acad. Publ., Dordrecht, 1993.
LINKS
J. Coquet, Power sums of digital sums, J. Number Theory 22 (1986), no. 2, 161-176.
J.-L. Mauclaire and Leo Murata, On q-additive functions, I. Proc. Japan Acad. Ser. A Math. Sci. 59 (1983), no. 6, 274-276.
J.-L. Mauclaire and Leo Murata, On q-additive functions, II. Proc. Japan Acad. Ser. A Math. Sci. 59 (1983), no. 9, 441-444.
J. R. Trollope, An explicit expression for binary digital sums, Math. Mag. 41 1968 21-25.
MATHEMATICA
Accumulate[f[n_]:=n - 5 Sum[Floor[n/6^k], {k, n}]; Array[f, 100, 0]^2] (* Vincenzo Librandi, Sep 04 2016 *)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
N. J. A. Sloane, Nov 13 2013
STATUS
approved