login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A049791
a(n) = Sum_{k=1..n} T(n,k), array T as in A049790.
7
1, 5, 14, 30, 54, 91, 137, 202, 280, 380, 492, 644, 799, 994, 1212, 1471, 1735, 2071, 2400, 2811, 3232, 3709, 4190, 4804, 5380, 6046, 6739, 7535, 8297, 9246, 10115, 11153, 12184, 13320, 14458, 15839, 17074, 18493, 19931, 21583, 23100, 24942, 26609, 28564, 30517, 32593, 34585, 37048, 39231, 41735, 44187, 46911
OFFSET
1,2
LINKS
MAPLE
seq( add(add(floor(n/floor(k/j)), j=1..k), k=1..n), n=1..60); # G. C. Greubel, Dec 10 2019
MATHEMATICA
Table[Sum[Sum[Floor[n/Floor[k/j]], {j, k}], {k, n}], {n, 1, 60}] (* G. C. Greubel, Dec 10 2019 *)
PROG
(PARI) a(n) = sum(k=1, n, sum(j=1, k, n\(k\j) ));
vector(60, n, a(n)) \\ G. C. Greubel, Dec 10 2019
(Magma) [ &+[(&+[Floor(n/Floor(k/j)): j in [1..k]]): k in [1..n]] n in [1..60]]; // G. C. Greubel, Dec 10 2019
(Sage) [sum(sum(floor(n/floor(k/j)) for j in (1..k)) for k in (1..n)) for n in (1..60)] # G. C. Greubel, Dec 10 2019
(GAP) List([1..60], n-> Sum([1..n], k-> Sum([1..k], j-> Int(n/Int(k/j)) ))); # G. C. Greubel, Dec 10 2019
CROSSREFS
KEYWORD
nonn
EXTENSIONS
Terms a(40) onward added by G. C. Greubel, Dec 10 2019
STATUS
approved