The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A049789 a(n) = T(n,n-4), array T as in A049783. 7
0, 0, 0, 0, 0, 0, 1, 0, 5, 5, 7, 4, 7, 10, 6, 9, 14, 10, 17, 10, 14, 16, 24, 12, 19, 20, 24, 18, 32, 16, 25, 23, 30, 31, 33, 19, 31, 34, 43, 28, 45, 26, 41, 37, 37, 41, 61, 27, 44, 39, 49, 41, 63, 47, 58, 35, 48, 54, 76, 37, 61, 68, 65, 46, 65 (list; graph; refs; listen; history; text; internal format)
OFFSET
5,9
LINKS
FORMULA
a(n) = Sum_{j=1..n-8} mod(n-4, floor((n-8)/j)). - G. C. Greubel, Dec 12 2019
MAPLE
seq( add(`mod`(n-4, floor((n-8)/j)), j=1..n-8), n=5..70); # G. C. Greubel, Dec 12 2019
MATHEMATICA
Table[Sum[Mod[n-4, Floor[(n-8)/j]], {j, n-8}], {n, 5, 70}] (* G. C. Greubel, Dec 12 2019 *)
PROG
(PARI) vector(70, n, sum(j=1, n-4, lift(Mod(n, (n-4)\j))) ) \\ G. C. Greubel, Dec 12 2019
(Magma) [ n lt 9 select 0 else &+[((n-4) mod Floor((n-8)/j)): j in [1..n-8]]: n in [5..70]]; // G. C. Greubel, Dec 12 2019
(Sage) [sum( (n-4)%floor((n-8)/j) for j in (1..n-8)) for n in (5..70)] # G. C. Greubel, Dec 12 2019
(GAP) List([5..70], n-> Sum([1..n-8], j-> (n-4) mod Int((n-8)/j)) ); # G. C. Greubel, Dec 12 2019
CROSSREFS
Sequence in context: A113272 A222392 A049471 * A234473 A011500 A003103
KEYWORD
nonn
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 21 05:34 EDT 2024. Contains 372728 sequences. (Running on oeis4.)