The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A049783 Triangular array T read by rows: T(n,k) = Sum_{j=1..k} (n mod floor(k/j)) for n, k >= 1. 7
0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 2, 2, 1, 0, 0, 0, 2, 1, 0, 0, 1, 1, 4, 3, 3, 2, 0, 0, 2, 0, 3, 4, 3, 0, 0, 1, 0, 2, 5, 4, 3, 4, 2, 0, 0, 1, 2, 0, 5, 4, 4, 4, 1, 0, 1, 2, 4, 2, 8, 7, 8, 8, 6, 5, 0, 0, 0, 0, 2, 0, 5, 4, 3, 4, 3, 0, 0, 1, 1, 2, 4, 3, 8, 8, 7, 9, 8, 6, 5 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
1,13
LINKS
EXAMPLE
Triangle T(n,k) (with rows n >= 1 and columns k >= 1) begins as follows:
0;
0, 0;
0, 1, 0;
0, 0, 1, 0;
0, 1, 2, 2, 1;
0, 0, 0, 2, 1, 0;
0, 1, 1, 4, 3, 3, 2;
...
MAPLE
seq(seq( add(`mod`(n, floor(k/j)), j=1..k), k=1..n), n=1..15); # G. C. Greubel, Dec 12 2019
MATHEMATICA
Table[Sum[Mod[n, Floor[k/j]], {j, k}], {n, 15}, {k, n}] (* G. C. Greubel, Dec 12 2019 *)
PROG
(PARI) T(n, k) = sum(j=1, k, lift(Mod(n, k\j)));
for(n=1, 15, for(k=1, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Dec 12 2019
(Magma) [ &+[(n mod Floor(k/j)): j in [1..k]]: k in [1..n], n in [1..15]]; // G. C. Greubel, Dec 12 2019
(Sage) [[sum( n%floor(k/j) for j in (1..k)) for k in (1..n)] for n in (1..15)] # G. C. Greubel, Dec 12 2019
(GAP) Flat(List([1..15], n-> List([1..n], k-> Sum([1..k], j-> n mod Int(k/j)) ))); # G. C. Greubel, Dec 12 2019
CROSSREFS
Sequence in context: A219493 A284092 A293051 * A287320 A210502 A350797
KEYWORD
nonn,tabl
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 23 14:23 EDT 2024. Contains 372763 sequences. (Running on oeis4.)