login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A049788 a(n) = T(n,n-3), array T as in A049783. 7
0, 0, 0, 0, 1, 0, 4, 3, 4, 4, 8, 3, 9, 9, 11, 8, 12, 10, 17, 9, 13, 15, 23, 14, 17, 19, 22, 20, 30, 12, 27, 22, 26, 30, 35, 15, 29, 35, 35, 27, 43, 22, 39, 36, 34, 40, 56, 29, 42, 38, 45, 39, 58, 43, 54, 34, 45, 49, 69, 33, 59, 67, 56, 45, 63 (list; graph; refs; listen; history; text; internal format)
OFFSET
4,7
LINKS
FORMULA
a(n) = Sum_{j=1..n-6} mod(n-3, floor((n-6)/j)). - G. C. Greubel, Dec 12 2019
MAPLE
seq( add(`mod`(n-3, floor((n-6)/j)), j=1..n-6), n=4..70); # G. C. Greubel, Dec 12 2019
MATHEMATICA
Table[Sum[Mod[n-3, Floor[(n-6)/j]], {j, n-6}], {n, 4, 70}] (* G. C. Greubel, Dec 12 2019 *)
PROG
(PARI) vector(70, n, sum(j=1, n-3, lift(Mod(n, (n-3)\j))) ) \\ G. C. Greubel, Dec 12 2019
(Magma) [n lt 7 select 0 else &+[((n-3) mod Floor((n-6)/j)): j in [1..n-6]]: n in [4..70]]; // G. C. Greubel, Dec 12 2019
(Sage) [sum( (n-3)%floor((n-6)/j) for j in (1..n-6)) for n in (4..70)] # G. C. Greubel, Dec 12 2019
(GAP) List([4..70], n-> Sum([1..n-6], j-> (n-3) mod Int((n-6)/j)) ); # G. C. Greubel, Dec 12 2019
CROSSREFS
Sequence in context: A239594 A094948 A332472 * A002558 A204671 A204816
KEYWORD
nonn
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 21 00:22 EDT 2024. Contains 371850 sequences. (Running on oeis4.)