The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A049788 a(n) = T(n,n-3), array T as in A049783. 7

%I #9 Sep 08 2022 08:44:58

%S 0,0,0,0,1,0,4,3,4,4,8,3,9,9,11,8,12,10,17,9,13,15,23,14,17,19,22,20,

%T 30,12,27,22,26,30,35,15,29,35,35,27,43,22,39,36,34,40,56,29,42,38,45,

%U 39,58,43,54,34,45,49,69,33,59,67,56,45,63

%N a(n) = T(n,n-3), array T as in A049783.

%H G. C. Greubel, <a href="/A049788/b049788.txt">Table of n, a(n) for n = 4..1000</a>

%F a(n) = Sum_{j=1..n-6} mod(n-3, floor((n-6)/j)). - _G. C. Greubel_, Dec 12 2019

%p seq( add(`mod`(n-3, floor((n-6)/j)), j=1..n-6), n=4..70); # _G. C. Greubel_, Dec 12 2019

%t Table[Sum[Mod[n-3, Floor[(n-6)/j]], {j, n-6}], {n,4,70}] (* _G. C. Greubel_, Dec 12 2019 *)

%o (PARI) vector(70, n, sum(j=1,n-3, lift(Mod(n, (n-3)\j))) ) \\ _G. C. Greubel_, Dec 12 2019

%o (Magma) [n lt 7 select 0 else &+[((n-3) mod Floor((n-6)/j)): j in [1..n-6]]: n in [4..70]]; // _G. C. Greubel_, Dec 12 2019

%o (Sage) [sum( (n-3)%floor((n-6)/j) for j in (1..n-6)) for n in (4..70)] # _G. C. Greubel_, Dec 12 2019

%o (GAP) List([4..70], n-> Sum([1..n-6], j-> (n-3) mod Int((n-6)/j)) ); # _G. C. Greubel_, Dec 12 2019

%Y Cf. A049783, A049784, A049785, A049786, A049787, A049789.

%K nonn

%O 4,7

%A _Clark Kimberling_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 17 19:53 EDT 2024. Contains 372607 sequences. (Running on oeis4.)