The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A204671 a(n) = n^n (mod 6). 3
 1, 1, 4, 3, 4, 5, 0, 1, 4, 3, 4, 5, 0, 1, 4, 3, 4, 5, 0, 1, 4, 3, 4, 5, 0, 1, 4, 3, 4, 5, 0, 1, 4, 3, 4, 5, 0, 1, 4, 3, 4, 5, 0, 1, 4, 3, 4, 5, 0, 1, 4, 3, 4, 5, 0, 1, 4, 3, 4, 5, 0, 1, 4, 3, 4, 5, 0, 1, 4, 3, 4, 5, 0, 1, 4, 3, 4, 5, 0, 1, 4, 3, 4, 5, 0, 1, 4 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS For n>0, periodic with period 6 = A174824: repeat [1, 4, 3, 4, 5, 0]. LINKS Andrew Howroyd, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,1). FORMULA G.f.: (x^6-5*x^5-4*x^4-3*x^3-4*x^2-x-1)/((x-1)*(x+1)*(x^2-x+1)*(x^2+x+1)). [Colin Barker, Jul 20 2012] From Wesley Ivan Hurt, Jun 23 2016: (Start) a(n) = a(n-6) for n>5. a(0) = 1, a(n) = (17 - cos(n*Pi) - 8*cos(n*Pi/3) - 8*cos(2*n*Pi/3) - 4*sqrt(3)*sin(n*Pi/3) - 4*sqrt(3)*sin(2*n*Pi/3))/6 for n>0. (End) a(n) = A010875(A000312(n)). - Michel Marcus, Jun 27 2016 MAPLE A204671:=n->[1, 4, 3, 4, 5, 0][(n mod 6)+1]: 1, seq(A204671(n), n=0..100); # Wesley Ivan Hurt, Jun 23 2016 MATHEMATICA Table[PowerMod[n, n, 6], {n, 0, 140}] Join[{1}, LinearRecurrence[{0, 0, 0, 0, 0, 1}, {1, 4, 3, 4, 5, 0}, 86]] (* Ray Chandler, Aug 26 2015 *) PROG (Magma) [1] cat &cat [[1, 4, 3, 4, 5, 0]^^20]; // Wesley Ivan Hurt, Jun 23 2016 (PARI) a(n)=lift(Mod(n, 6)^n) \\ Andrew Howroyd, Feb 25 2018 CROSSREFS Cf. A000312, A010875, A174824, A204690. Sequence in context: A332472 A049788 A002558 * A204816 A204818 A099634 Adjacent sequences: A204668 A204669 A204670 * A204672 A204673 A204674 KEYWORD nonn,easy AUTHOR José María Grau Ribas, Jan 18 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 28 01:34 EDT 2024. Contains 372900 sequences. (Running on oeis4.)