login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A204671
a(n) = n^n (mod 6).
3
1, 1, 4, 3, 4, 5, 0, 1, 4, 3, 4, 5, 0, 1, 4, 3, 4, 5, 0, 1, 4, 3, 4, 5, 0, 1, 4, 3, 4, 5, 0, 1, 4, 3, 4, 5, 0, 1, 4, 3, 4, 5, 0, 1, 4, 3, 4, 5, 0, 1, 4, 3, 4, 5, 0, 1, 4, 3, 4, 5, 0, 1, 4, 3, 4, 5, 0, 1, 4, 3, 4, 5, 0, 1, 4, 3, 4, 5, 0, 1, 4, 3, 4, 5, 0, 1, 4
OFFSET
0,3
COMMENTS
For n>0, periodic with period 6 = A174824: repeat [1, 4, 3, 4, 5, 0].
FORMULA
G.f.: (x^6-5*x^5-4*x^4-3*x^3-4*x^2-x-1)/((x-1)*(x+1)*(x^2-x+1)*(x^2+x+1)). [Colin Barker, Jul 20 2012]
From Wesley Ivan Hurt, Jun 23 2016: (Start)
a(n) = a(n-6) for n>5.
a(0) = 1, a(n) = (17 - cos(n*Pi) - 8*cos(n*Pi/3) - 8*cos(2*n*Pi/3) - 4*sqrt(3)*sin(n*Pi/3) - 4*sqrt(3)*sin(2*n*Pi/3))/6 for n>0. (End)
a(n) = A010875(A000312(n)). - Michel Marcus, Jun 27 2016
MAPLE
A204671:=n->[1, 4, 3, 4, 5, 0][(n mod 6)+1]: 1, seq(A204671(n), n=0..100); # Wesley Ivan Hurt, Jun 23 2016
MATHEMATICA
Table[PowerMod[n, n, 6], {n, 0, 140}]
Join[{1}, LinearRecurrence[{0, 0, 0, 0, 0, 1}, {1, 4, 3, 4, 5, 0}, 86]] (* Ray Chandler, Aug 26 2015 *)
PROG
(Magma) [1] cat &cat [[1, 4, 3, 4, 5, 0]^^20]; // Wesley Ivan Hurt, Jun 23 2016
(PARI) a(n)=lift(Mod(n, 6)^n) \\ Andrew Howroyd, Feb 25 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved