login
A099634
a(n) = gcd(P+p, P*p) where P is the largest and p the smallest prime factor of n.
3
4, 3, 4, 5, 1, 7, 4, 3, 1, 11, 1, 13, 1, 1, 4, 17, 1, 19, 1, 1, 1, 23, 1, 5, 1, 3, 1, 29, 1, 31, 4, 1, 1, 1, 1, 37, 1, 1, 1, 41, 1, 43, 1, 1, 1, 47, 1, 7, 1, 1, 1, 53, 1, 1, 1, 1, 1, 59, 1, 61, 1, 1, 4, 1, 1, 67, 1, 1, 1, 71, 1, 73, 1, 1, 1, 1, 1, 79, 1, 3, 1, 83, 1, 1, 1, 1, 1, 89, 1, 1, 1, 1, 1, 1, 1, 97
OFFSET
2,1
EXAMPLE
If n is prime q > 2, then a(n) = gcd(q^2, 2q) = q.
MATHEMATICA
PrimeFactors[n_Integer] := Flatten[ Table[ # [[1]], {1}] & /@ FactorInteger[n]]; f[n_] := Block[{pf = PrimeFactors[n]}, GCD[pf[[1]] + pf[[ -1]], pf[[1]]*pf[[ -1]] ]]; Table[ f[n], {n, 2, 97}] (* Robert G. Wilson v, Nov 04 2004 *)
CROSSREFS
Sequence in context: A204671 A204816 A204818 * A203144 A109382 A342843
KEYWORD
nonn
AUTHOR
Labos Elemer, Oct 28 2004
STATUS
approved