The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A049786 a(n) = T(n,n-1), array T as in A049783. 7
 0, 0, 1, 1, 2, 1, 3, 3, 4, 4, 6, 3, 6, 7, 8, 6, 10, 8, 11, 9, 11, 10, 18, 10, 12, 14, 18, 14, 20, 12, 19, 19, 20, 21, 30, 13, 20, 25, 32, 21, 28, 18, 31, 29, 28, 25, 45, 25, 30, 31, 34, 30, 48, 37, 43, 28, 33, 38, 64, 29, 38, 47, 53, 37, 50, 32 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,5 LINKS G. C. Greubel, Table of n, a(n) for n = 2..1000 FORMULA a(n) = Sum_{j=1..n-2} mod(n-1, floor((n-2)/j)). - G. C. Greubel, Dec 12 2019 MAPLE seq( add(`mod`(n-1, floor((n-2)/j)), j=1..n-2), n=2..70); # G. C. Greubel, Dec 12 2019 MATHEMATICA Table[Sum[Mod[n-1, Floor[(n-2)/j]], {j, n-2}], {n, 2, 70}] (* G. C. Greubel, Dec 12 2019 *) PROG (PARI) vector(70, n, sum(j=1, n-1, lift(Mod(n, (n-1)\j))) ) \\ G. C. Greubel, Dec 12 2019 (Magma) [0] cat [ &+[((n-1) mod Floor((n-2)/j)): j in [1..n-2]]: n in [3..70]]; // G. C. Greubel, Dec 12 2019 (Sage) [sum( (n-1)%floor((n-2)/j) for j in (1..n-2)) for n in (2..70)] # G. C. Greubel, Dec 12 2019 (GAP) List([2..70], n-> Sum([1..n-2], j-> (n-1) mod Int((n-2)/j)) ); # G. C. Greubel, Dec 12 2019 CROSSREFS Cf. A049783, A049784, A049785, A049787, A049788, A049789. Sequence in context: A123621 A370592 A151662 * A282611 A187498 A029137 Adjacent sequences: A049783 A049784 A049785 * A049787 A049788 A049789 KEYWORD nonn AUTHOR Clark Kimberling STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 25 03:39 EDT 2024. Contains 372782 sequences. (Running on oeis4.)