login
A231678
a(n) = Sum_{i=0..n} digsum_7(i)^3, where digsum_7(i) = A053828(i).
5
0, 1, 9, 36, 100, 225, 441, 442, 450, 477, 541, 666, 882, 1225, 1233, 1260, 1324, 1449, 1665, 2008, 2520, 2547, 2611, 2736, 2952, 3295, 3807, 4536, 4600, 4725, 4941, 5284, 5796, 6525, 7525, 7650, 7866, 8209, 8721, 9450, 10450, 11781, 11997, 12340, 12852, 13581, 14581, 15912, 17640, 17641, 17649, 17676, 17740, 17865, 18081, 18424, 18432, 18459, 18523, 18648, 18864, 19207
OFFSET
0,3
LINKS
Jean Coquet, Power sums of digital sums, J. Number Theory 22 (1986), no. 2, 161-176.
P. J. Grabner, P. Kirschenhofer, H. Prodinger, R. F. Tichy, On the moments of the sum-of-digits function, PDF, Applications of Fibonacci numbers, Vol. 5 (St. Andrews, 1992), 263-271, Kluwer Acad. Publ., Dordrecht, 1993.
J.-L. Mauclaire, Leo Murata, On q-additive functions. I, Proc. Japan Acad. Ser. A Math. Sci. 59 (1983), no. 6, 274-276.
J.-L. Mauclaire, Leo Murata, On q-additive functions. II, Proc. Japan Acad. Ser. A Math. Sci. 59 (1983), no. 9, 441-444.
J. R. Trollope, An explicit expression for binary digital sums, Math. Mag. 41 1968 21-25.
PROG
(PARI) a(n) = sum(i=0, n, sumdigits(i, 7)^3); \\ Michel Marcus, Sep 20 2017
CROSSREFS
KEYWORD
nonn,base
AUTHOR
N. J. A. Sloane, Nov 13 2013
STATUS
approved