login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A231682
a(n) = Sum_{i=0..n} digsum_8(i)^3, where digsum_8(i) = A053829(i).
4
0, 1, 9, 36, 100, 225, 441, 784, 785, 793, 820, 884, 1009, 1225, 1568, 2080, 2088, 2115, 2179, 2304, 2520, 2863, 3375, 4104, 4131, 4195, 4320, 4536, 4879, 5391, 6120, 7120, 7184, 7309, 7525, 7868, 8380, 9109, 10109, 11440, 11565, 11781, 12124, 12636, 13365, 14365, 15696, 17424, 17640, 17983, 18495, 19224, 20224, 21555, 23283, 25480, 25823, 26335, 27064, 28064, 29395
OFFSET
0,3
LINKS
Jean Coquet, Power sums of digital sums, J. Number Theory 22 (1986), no. 2, 161-176.
P. J. Grabner, P. Kirschenhofer, H. Prodinger, R. F. Tichy, On the moments of the sum-of-digits function, PDF, Applications of Fibonacci numbers, Vol. 5 (St. Andrews, 1992), 263-271, Kluwer Acad. Publ., Dordrecht, 1993.
J.-L. Mauclaire, Leo Murata, On q-additive functions. I, Proc. Japan Acad. Ser. A Math. Sci. 59 (1983), no. 6, 274-276.
J.-L. Mauclaire, Leo Murata, On q-additive functions. II, Proc. Japan Acad. Ser. A Math. Sci. 59 (1983), no. 9, 441-444.
J. R. Trollope, An explicit expression for binary digital sums, Math. Mag. 41 1968 21-25.
PROG
(PARI) a(n) = sum(i=0, n, sumdigits(i, 8)^3); \\ Michel Marcus, Sep 20 2017
CROSSREFS
KEYWORD
nonn,base
AUTHOR
N. J. A. Sloane, Nov 13 2013
STATUS
approved