login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{i=0..n} digsum_6(i)^4, where digsum_6(i) = A053827(i).
5

%I #9 Sep 04 2016 18:48:53

%S 0,1,17,98,354,979,980,996,1077,1333,1958,3254,3270,3351,3607,4232,

%T 5528,7929,8010,8266,8891,10187,12588,16684,16940,17565,18861,21262,

%U 25358,31919,32544,33840,36241,40337,46898,56898,56899,56915,56996,57252,57877,59173,59189,59270,59526,60151,61447,63848,63929,64185,64810,66106,68507,72603,72859,73484,74780,77181

%N a(n) = Sum_{i=0..n} digsum_6(i)^4, where digsum_6(i) = A053827(i).

%D Grabner, P. J.; Kirschenhofer, P.; Prodinger, H.; Tichy, R. F.; On the moments of the sum-of-digits function. Applications of Fibonacci numbers, Vol. 5 (St. Andrews, 1992), 263-271, Kluwer Acad. Publ., Dordrecht, 1993.

%H Vincenzo Librandi, <a href="/A231675/b231675.txt">Table of n, a(n) for n = 0..1000</a>

%H J. Coquet, <a href="http://dx.doi.org/10.1016/0022-314X(86)90067-3">Power sums of digital sums</a>, J. Number Theory 22 (1986), no. 2, 161-176.

%H J.-L. Mauclaire and Leo Murata, <a href="http://dx.doi.org/10.3792/pjaa.59.274">On q-additive functions</a>, I. Proc. Japan Acad. Ser. A Math. Sci. 59 (1983), no. 6, 274-276.

%H J.-L. Mauclaire and Leo Murata, <a href="http://dx.doi.org/10.3792/pjaa.59.441">On q-additive functions</a>, II. Proc. Japan Acad. Ser. A Math. Sci. 59 (1983), no. 9, 441-444.

%H J. R. Trollope, <a href="http://www.jstor.org/stable/2687954">An explicit expression for binary digital sums</a>, Math. Mag. 41 1968 21-25.

%t Accumulate[f[n_]:= n - 5 Sum[Floor[n/6^k], {k, n}]; Array[f, 100, 0]^4] (* _Vincenzo Librandi_, Sep 04 2016 *)

%Y Cf. A053827, A231672, A231673, A231674.

%K nonn,base

%O 0,3

%A _N. J. A. Sloane_, Nov 13 2013