OFFSET
0,3
COMMENTS
Also the fixed point of the morphism 0->{0,1,2,3,4,5,6,7,8,9,10}, 1->{1,2,3,4,5,6,7,8,9,10,11}, 2->{2,3,4,5,6,7,8,9,10,11,12}, etc. - Robert G. Wilson v, Jul 27 2006
LINKS
Tanar Ulric, Table of n, a(n) for n = 0..10000
Jeffrey O. Shallit, Problem 6450, Advanced Problems, The American Mathematical Monthly, Vol. 91, No. 1 (1984), pp. 59-60; Two series, solution to Problem 6450, ibid., Vol. 92, No. 7 (1985), pp. 513-514.
Robert Walker, Self Similar Sloth Canon Number Sequences.
Eric Weisstein's World of Mathematics, Digit Sum.
FORMULA
From Benoit Cloitre, Dec 19 2002: (Start)
a(0)=0, a(11n+i) = a(n)+i for 0 <= i <= 10.
a(n) = n-(m-1)*(Sum_{k>0} floor(n/m^k)) = n-(m-1)*A064458(n). (End)
a(n) = A138530(n,11) for n > 10. - Reinhard Zumkeller, Mar 26 2008
Sum_{n>=1} a(n)/(n*(n+1)) = 11*log(11)/10 (Shallit, 1984). - Amiram Eldar, Jun 03 2021
EXAMPLE
a(20) = 1 + 9 = 10 because 20 is written as 19 base 11.
MATHEMATICA
Table[Plus @@ IntegerDigits[n, 11], {n, 0, 86}] (* or *)
Nest[ Flatten[ #1 /. a_Integer -> Table[a + i, {i, 0, 10}]] &, {0}, 2] (* Robert G. Wilson v, Jul 27 2006 *)
PROG
(PARI) a(n)=if(n<1, 0, if(n%11, a(n-1)+1, a(n/11)))
(PARI) a(n)=sumdigits(n, 11) \\ Charles R Greathouse IV, Oct 20 2021
(C) int Base11DigitSum(int n) {
int count = 0;
while (n != 0) { count += n % 11; n = n / 11; }
return count;
} // Tanar Ulric, Oct 20 2021
CROSSREFS
KEYWORD
base,nonn,easy,changed
AUTHOR
Henry Bottomley, Mar 28 2000
STATUS
approved