The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A283370 Minimal number of terms required to write n as sum of numbers in A000389 = { C(k,5); k=1,2,3,... } (with repetitions allowed). 1
 0, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 6, 2, 3, 4, 5, 6, 7, 3, 4, 5, 1, 2, 3, 4, 5, 6, 2, 3, 4, 5, 6, 7, 3, 4, 5, 6, 7, 8, 4, 5, 6, 2, 3, 4, 5, 6, 7, 3, 4, 5, 6, 7, 8, 4, 5, 1, 2, 3, 4, 5, 6, 2, 3, 4, 5, 6, 7, 3, 4, 5, 6, 7, 8, 4, 5, 6, 2, 3, 4, 5, 6, 7, 3, 4, 5, 6 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Analog, for A000389 = {C(n,5)}, of A061336 (for triangular numbers A000217 = {C(n,2)}), A104246 (for tetrahedral numbers A000292 = {C(n,3)}) and A283365 (for A000332 = {C(n,4)}). LINKS Hyun Kwang Kim, On regular polytope numbers, Proc. Amer. Math. Soc. 131 (2003), p. 65-75. DOI:10.1090/S0002-9939-02-06710-2. FORMULA a(n) <= 10 = a(220) for all n, cf. Kim paper. PROG (PARI) {a(n, k=5, M=9e9, N=n) = n>k || return(n); for(m=k, M, binomial(m, k)>n && (M=m) && break); M-- <= k && return(n); my(b=binomial(M, k), c=binomial(M-1, k), NN); forstep( nn=n\b, 0, -1, if(N>NN=nn+a(n-nn*b, k, M, N), N=NN); n-(nn-1)*b >= (N-nn+1)*c && break); N} CROSSREFS Cf. A000332 = {C(n,4)}; A061336 (analog for A000217), A104246 (analog for A000292), A283365 (analog for A000332). Sequence in context: A193106 A338491 A338494 * A053827 A033926 A193042 Adjacent sequences:  A283367 A283368 A283369 * A283371 A283372 A283373 KEYWORD nonn AUTHOR M. F. Hasler, Mar 06 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 19 15:11 EDT 2021. Contains 347563 sequences. (Running on oeis4.)