login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A283365 Minimal number of numbers in A000332 = { C(k,4); k=1,2,3,... } whose sum equals n. 2
0, 1, 2, 3, 4, 1, 2, 3, 4, 5, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 2, 3, 4, 5, 6, 3, 4, 5, 6, 7, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 2, 3, 4, 5, 6, 3, 4, 5, 6, 7, 2, 3, 4, 5, 6, 3, 4, 5, 6, 7, 4, 5, 6, 7, 8, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 2, 3, 4, 5, 6, 3, 4, 5, 6, 7, 2, 3 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Analog, for A000332 = {C(n,4)}, of A061336 (for triangular numbers A000217) and A104246 (for tetrahedral numbers A000292).

LINKS

Table of n, a(n) for n=0..86.

Hyun Kwang Kim, On regular polytope numbers, Proc. Amer. Math. Soc. 131 (2003), p. 65-75. DOI:10.1090/S0002-9939-02-06710-2.

FORMULA

a(n) <= 8 = a(64) for all n, cf. Kim paper.

PROG

(PARI) {a(n, k=4, M=9e9, N=n) = (n <= k || M <= k+1) && return(n); for(m=k, M, binomial(m, k)>n && (M=m) && break); M-- <= k && return(n); my(b=binomial(M, k), c=binomial(M-1, k), NN); forstep( nn=n\b, 0, -1, if(N>NN=nn+g(n-nn*b, k, M, N, d), N=NN); n-(nn-1)*b >= (N-nn+1)*c && break); N}

CROSSREFS

Cf. A000332 = {C(n,4)}; A061336 (analog for triangular numbers A000217), A104246 (analog for tetrahedral numbers A000292).

Sequence in context: A100878 A145172 A280053 * A053824 A033925 A064866

Adjacent sequences:  A283362 A283363 A283364 * A283366 A283367 A283368

KEYWORD

nonn

AUTHOR

M. F. Hasler, Mar 06 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 18 16:34 EST 2018. Contains 318229 sequences. (Running on oeis4.)