login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A283365
Minimal number of numbers in A000332 = { C(k,4); k=1,2,3,... } whose sum equals n.
3
0, 1, 2, 3, 4, 1, 2, 3, 4, 5, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 2, 3, 4, 5, 6, 3, 4, 5, 6, 7, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 2, 3, 4, 5, 6, 3, 4, 5, 6, 7, 2, 3, 4, 5, 6, 3, 4, 5, 6, 7, 4, 5, 6, 7, 8, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 2, 3, 4, 5, 6, 3, 4, 5, 6, 7, 2, 3
OFFSET
0,3
COMMENTS
Analog, for A000332 = {C(n,4)}, of A061336 (for triangular numbers A000217) and A104246 (for tetrahedral numbers A000292).
LINKS
Hyun Kwang Kim, On regular polytope numbers, Proc. Amer. Math. Soc. 131 (2003), p. 65-75. DOI:10.1090/S0002-9939-02-06710-2.
FORMULA
a(n) <= 8 = a(64) for all n, according to Kim (2003, first row of table "d = 4", p. 74), but this "numerical result" has no "* denoting exact values" (see Remark at end of paper), so it could be incorrect. [Disclaimer added by M. F. Hasler, Sep 22 2022]
PROG
(PARI) {a(n, k=4, M=9e9, N=n) = (n <= k || M <= k+1) && return(n); for(m=k, M, binomial(m, k)>n && (M=m) && break); M-- <= k && return(n); my(b=binomial(M, k), c=binomial(M-1, k), NN); forstep( nn=n\b, 0, -1, if(N>NN=nn+g(n-nn*b, k, M, N, d), N=NN); n-(nn-1)*b >= (N-nn+1)*c && break); N}
CROSSREFS
Cf. A000332 = {C(n,4)}; A061336 (analog for triangular numbers A000217), A104246 (analog for tetrahedral numbers A000292).
Sequence in context: A338484 A338493 A280053 * A053824 A033925 A358012
KEYWORD
nonn
AUTHOR
M. F. Hasler, Mar 06 2017
STATUS
approved