login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A025889
Expansion of 1/((1-x^5)*(1-x^8)*(1-x^11)).
4
1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 2, 0, 1, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 2, 3, 2, 2, 3, 2, 3, 3, 2, 4, 3, 3, 4, 3, 4, 4, 3, 5, 4, 4, 5, 4, 5, 5, 5, 6, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9
OFFSET
0,17
COMMENTS
a(n) is the number of partitions of n into parts 5, 8, and 11. - Michel Marcus, Dec 12 2022
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,1,0,0,1,0,0,1,0,-1,0,0,-1,0,0,-1,0,0,0,0,1).
MATHEMATICA
CoefficientList[Series[1/((1-x^5)*(1-x^8)*(1-x^11)), {x, 0, 90}], x] (* G. C. Greubel, Dec 11 2022 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Integers(), 90); Coefficients(R!( 1/((1-x^5)*(1-x^8)*(1-x^11)) )); // G. C. Greubel, Dec 11 2022
(SageMath)
def A025889_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( 1/((1-x^5)*(1-x^8)*(1-x^11)) ).list()
A025889_list(90) # G. C. Greubel, Dec 11 2022
CROSSREFS
KEYWORD
nonn
STATUS
approved