login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A025886
Expansion of 1/((1-x^5)*(1-x^7)*(1-x^12)).
6
1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 2, 0, 1, 1, 0, 2, 0, 2, 1, 1, 2, 0, 3, 1, 2, 2, 1, 3, 1, 3, 2, 2, 3, 2, 4, 2, 3, 3, 3, 4, 3, 4, 3, 4, 4, 4, 5, 4, 5, 4, 5, 5, 5, 6, 5, 6, 5, 6, 7, 6, 7, 6, 7, 7, 7, 8, 7, 8, 8, 8, 9, 8, 9, 9, 9, 10, 9, 10
OFFSET
0,13
COMMENTS
a(n) is the number of partitions of n into parts 5, 7, and 12. - Joerg Arndt, Nov 20 2022
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,-1,0,-1,0,0,0,0,1).
FORMULA
For n>23, a(n) = a(n-5) + a(n-7) - a(n-17) - a(n-19) + a(n-24). - Harvey P. Dale, Sep 28 2012
MATHEMATICA
CoefficientList[Series[1/((1-x^5)(1-x^7)(1-x^12)), {x, 0, 80}], x] (* Harvey P. Dale, Sep 28 2012 *)
LinearRecurrence[{0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, -1, 0, 0, 0, 0, 1}, {1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 2, 0, 1, 1, 0, 2, 0, 2, 1, 1, 2, 0}, 80] (* Harvey P. Dale, Nov 02 2021 *)
PROG
(PARI) Vec(1/((1-x^5)*(1-x^7)*(1-x^12))+O(x^99)) \\ Charles R Greathouse IV, Sep 27 2012
(Magma) R<x>:=PowerSeriesRing(Rationals(), 80); Coefficients(R!( 1/((1-x^5)*(1-x^7)*(1-x^12)) )); // G. C. Greubel, Nov 19 2022
(SageMath)
def A025886_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( 1/((1-x^5)*(1-x^7)*(1-x^12)) ).list()
A025886_list(80) # G. C. Greubel, Nov 19 2022
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved