The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A147310 A golden mean based polynomials set that behaves like an even powered Pascal triangle: p(x,n) = (x - phi)^floor(n/2)*(x + phi)^floor(n/2). 0
 1, 1, 1, 0, -1, 1, 0, -1, 1, 0, -2, 0, 1, 1, 0, -2, 0, 1, 1, 0, -3, 0, 3, 0, -1, 1, 0, -3, 0, 3, 0, -1, 1, 0, -4, 0, 6, 0, -4, 0, 1, 1, 0, -4, 0, 6, 0, -4, 0, 1, 1, 0, -5, 0, 10, 0, -10, 0, 5, 0, -1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,11 LINKS FORMULA p(x,n)=(x - GoldenRatio)^Floor[n/2]*(x + GoldenRatio)^Floor[n/2]; t(n,m)=GoldenRatio^((-m + 1))*Reverse(Coefficients(p(x,n))). EXAMPLE {1}, {1}, {1, 0, -1}, {1, 0, -1}, {1, 0, -2, 0, 1}, {1, 0, -2, 0, 1}, {1, 0, -3, 0, 3, 0, -1}, {1, 0, -3, 0, 3, 0, -1}, {1, 0, -4, 0, 6, 0, -4, 0, 1}, {1, 0, -4, 0, 6, 0, -4, 0, 1}, {1, 0, -5, 0, 10, 0, -10, 0, 5, 0, -1} MATHEMATICA Clear[p, x, n]; p[x_, n_] = (x - GoldenRatio)^Floor[n/2]*(x + GoldenRatio)^Floor[n/2] a = Table[Reverse[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x]], {n, 0, 10}]; Flatten[%]; b = Table[a[[n]][[m]]*GoldenRatio^((-m + 1)), {n, 1, Length[a]}, {m, 1, Length[a[[n]]]}]; Flatten[b] CROSSREFS Sequence in context: A281271 A284319 A281272 * A025886 A117355 A319571 Adjacent sequences:  A147307 A147308 A147309 * A147311 A147312 A147313 KEYWORD tabf,sign,more,uned AUTHOR Roger L. Bagula, Nov 05 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 21 23:44 EST 2022. Contains 350481 sequences. (Running on oeis4.)