login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A147310 A golden mean based polynomials set that behaves like an even powered Pascal triangle: p(x,n) = (x - phi)^floor(n/2)*(x + phi)^floor(n/2). 0
1, 1, 1, 0, -1, 1, 0, -1, 1, 0, -2, 0, 1, 1, 0, -2, 0, 1, 1, 0, -3, 0, 3, 0, -1, 1, 0, -3, 0, 3, 0, -1, 1, 0, -4, 0, 6, 0, -4, 0, 1, 1, 0, -4, 0, 6, 0, -4, 0, 1, 1, 0, -5, 0, 10, 0, -10, 0, 5, 0, -1 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,11

LINKS

Table of n, a(n) for n=0..60.

FORMULA

p(x,n)=(x - GoldenRatio)^Floor[n/2]*(x + GoldenRatio)^Floor[n/2]; t(n,m)=GoldenRatio^((-m + 1))*Reverse(Coefficients(p(x,n))).

EXAMPLE

{1}, {1}, {1, 0, -1}, {1, 0, -1}, {1, 0, -2, 0, 1}, {1, 0, -2, 0, 1}, {1, 0, -3, 0, 3, 0, -1}, {1, 0, -3, 0, 3, 0, -1}, {1, 0, -4, 0, 6, 0, -4, 0, 1}, {1, 0, -4, 0, 6, 0, -4, 0, 1}, {1, 0, -5, 0, 10, 0, -10, 0, 5, 0, -1}

MATHEMATICA

Clear[p, x, n]; p[x_, n_] = (x - GoldenRatio)^Floor[n/2]*(x + GoldenRatio)^Floor[n/2] a = Table[Reverse[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x]], {n, 0, 10}]; Flatten[%]; b = Table[a[[n]][[m]]*GoldenRatio^((-m + 1)), {n, 1, Length[a]}, {m, 1, Length[a[[n]]]}]; Flatten[b]

CROSSREFS

Sequence in context: A281271 A284319 A281272 * A025886 A117355 A319571

Adjacent sequences:  A147307 A147308 A147309 * A147311 A147312 A147313

KEYWORD

tabf,sign,more,uned

AUTHOR

Roger L. Bagula, Nov 05 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 22 13:47 EST 2019. Contains 329393 sequences. (Running on oeis4.)