login
Expansion of 1/((1-x^5)*(1-x^8)*(1-x^11)).
4

%I #12 Dec 12 2022 08:22:35

%S 1,0,0,0,0,1,0,0,1,0,1,1,0,1,0,1,2,0,1,1,1,2,1,1,2,1,2,2,1,2,2,2,3,2,

%T 2,3,2,3,3,2,4,3,3,4,3,4,4,3,5,4,4,5,4,5,5,5,6,5,5,6,6,6,6,6,7,7,7,7,

%U 7,7,8,8,8,8,8,9,9,9,9,9

%N Expansion of 1/((1-x^5)*(1-x^8)*(1-x^11)).

%C a(n) is the number of partitions of n into parts 5, 8, and 11. - _Michel Marcus_, Dec 12 2022

%H G. C. Greubel, <a href="/A025889/b025889.txt">Table of n, a(n) for n = 0..5000</a>

%H <a href="/index/Rec#order_24">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,1,0,0,1,0,0,1,0,-1,0,0,-1,0,0,-1,0,0,0,0,1).

%t CoefficientList[Series[1/((1-x^5)*(1-x^8)*(1-x^11)), {x,0,90}], x] (* _G. C. Greubel_, Dec 11 2022 *)

%o (Magma) R<x>:=PowerSeriesRing(Integers(), 90); Coefficients(R!( 1/((1-x^5)*(1-x^8)*(1-x^11)) )); // _G. C. Greubel_, Dec 11 2022

%o (SageMath)

%o def A025889_list(prec):

%o P.<x> = PowerSeriesRing(ZZ, prec)

%o return P( 1/((1-x^5)*(1-x^8)*(1-x^11)) ).list()

%o A025889_list(90) # _G. C. Greubel_, Dec 11 2022

%Y Cf. A025887, A025888, A025890.

%K nonn

%O 0,17

%A _N. J. A. Sloane_