login
Expansion of 1/((1-x^5)*(1-x^9)*(1-x^12)).
5

%I #16 Jan 17 2024 01:15:32

%S 1,0,0,0,0,1,0,0,0,1,1,0,1,0,1,1,0,1,1,1,1,1,1,1,2,1,1,2,1,2,2,1,2,2,

%T 2,2,3,2,2,3,2,3,3,2,3,4,3,3,4,3,4,4,3,4,5,4,4,5,4,5,6,4,5,6,5,6,6,5,

%U 6,7,6,6,8,6,7,8,6,8,8,7

%N Expansion of 1/((1-x^5)*(1-x^9)*(1-x^12)).

%C a(n) is the number of partitions of n into parts 5, 9, and 12. - _Joerg Arndt_, Jan 17 2024

%H Harvey P. Dale, <a href="/A025893/b025893.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_26">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,1,0,0,0,1,0,0,1,0,-1,0,0,-1,0,0,0,-1,0,0,0,0,1).

%t CoefficientList[Series[1/((1-x^5)(1-x^9)(1-x^12)),{x,0,80}],x] (* _Harvey P. Dale_, Jan 09 2017 *)

%o (Magma) R<x>:=PowerSeriesRing(Integers(), 100); Coefficients(R!( 1/((1-x^5)*(1-x^9)*(1-x^12)) )); // _G. C. Greubel_, Jan 16 2024

%o (Sage)

%o def A025893_list(prec):

%o P.<x> = PowerSeriesRing(QQ, prec)

%o return P( 1/((1-x^5)*(1-x^9)*(1-x^12)) ).list()

%o A025893_list(100) # _G. C. Greubel_, Jan 16 2024

%Y Cf. A025890, A025891, A025892, A025894.

%K nonn

%O 0,25

%A _N. J. A. Sloane_