Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #27 Sep 08 2022 08:44:49
%S 1,2,7,27,109,453,1922,8284,36155,159435,709246,3178992,14343567,
%T 65099245,297015765,1361584755,6268757195,28975155915,134410918700,
%U 625578384150,2920488902795,13672762887465,64179220019365,301987822527627
%N a(n) = T(2n, n), T given by A026758.
%H Vincenzo Librandi, <a href="/A026759/b026759.txt">Table of n, a(n) for n = 0..200</a>
%F a(n) = A002212(n+1) - A000245(n). - _David Callan_, Feb 01 2014
%F G.f.: ((1-x)*sqrt(1 - 4*x) - sqrt(1 - 6*x + 5*x^2))/(2*x^2). - _G. C. Greubel_, Oct 31 2019
%p seq(coeff(series(((1-x)*sqrt(1-4*x) - sqrt(1 -6*x +5*x^2))/(2*x^2), x, n+2), x, n), n = 0..30); # _G. C. Greubel_, Oct 31 2019
%t CoefficientList[Normal[Series[((1-x)Sqrt[1-4x] -Sqrt[1-6x+5x^2])/(2x^2), {x, 0, 30}]], x] (* _David Callan_, Feb 01 2014 *)
%o (PARI) my(x='x+O('x^30)); Vec(((1-x)*sqrt(1 - 4*x) - sqrt(1 - 6*x + 5*x^2))/(2*x^2)) \\ _G. C. Greubel_, Oct 31 2019
%o (Magma) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( ((1-x)*Sqrt(1 - 4*x) - Sqrt(1 - 6*x + 5*x^2))/(2*x^2) )); // _G. C. Greubel_, Oct 31 2019
%o (Sage)
%o def A077952_list(prec):
%o P.<x> = PowerSeriesRing(ZZ, prec)
%o return P(((1-x)*sqrt(1-4*x) - sqrt(1-6*x+5*x^2))/(2*x^2)).list()
%o A077952_list(30) # _G. C. Greubel_, Oct 31 2019
%Y Cf. A026758, A026760, A026761, A026762, A026763, A026764, A026765, A026766, A026767, A026768.
%K nonn
%O 0,2
%A _Clark Kimberling_