login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A243585 Expansion of x*log'(C(C(x)-1)-1), C(x) = (1-sqrt(1-4*x))/(2*x). 2
1, 4, 20, 106, 580, 3244, 18446, 106250, 618340, 3628600, 21438820, 127377980, 760346350, 4556473276, 27396081950, 165189725326, 998492094244, 6048338850560, 36706629690824, 223139239595840, 1358475322091620 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Table of n, a(n) for n=0..20.

G.-S. Cheon, H. Kim, L. W. Shapiro, Mutation effects in ordered trees, arXiv preprint arXiv:1410.1249 [math.CO], 2014 (see page 6).

FORMULA

a(n) = Sum_{k=0..n} binomial(2*k,k)*binomial(2*n,n-k).

a(n) ~ 5^(2*n+1/2) / (4^n * sqrt(3*Pi*n)). - Vaclav Kotesovec, Jun 08 2014

First column of A094527^2. 1 + x*exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + x + 4*x^2 + 18*x^3 + 86*x^4 + ... is the o.g.f. for A153294. - Peter Bala, Jul 21 2015

Conjecture D-finite with recurrence: 2*n*(2*n-1)*(3*n-5)*a(n) +(-123*n^3+328*n^2-249*n+60)*a(n-1) +50*(n-1)*(2*n-3)*(3*n-2)*a(n-2)=0. - R. J. Mathar, Jun 14 2016

a(n) = binomial(2*n, n)*hypergeom([1/2, -n], [n + 1], -4]. - Peter Luschny, Aug 04 2019

MATHEMATICA

CoefficientList[Series[1/(Sqrt[(1-4*x)*(2*Sqrt[1-4*x]+5*x-2)/x]), {x, 0, 20}], x] (* Vaclav Kotesovec, Jun 08 2014 *)

A243585[n_] := Binomial[2 n, n] Hypergeometric2F1[1/2, -n, n + 1, -4];

Table[A243585[n], {n, 0, 20}] (* Peter Luschny, Aug 04 2019 *)

PROG

(Maxima)

a(n):=sum(binomial(2*k, k)*binomial(2*n, n-k), k, 0, n);

CROSSREFS

Cf. A000108, A000984, A094527, A153294.

Sequence in context: A254537 A135159 A190724 * A263965 A265084 A321111

Adjacent sequences:  A243582 A243583 A243584 * A243586 A243587 A243588

KEYWORD

nonn

AUTHOR

Vladimir Kruchinin, Jun 07 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 1 13:12 EDT 2022. Contains 354973 sequences. (Running on oeis4.)