OFFSET
1,1
COMMENTS
Exponent values (3,5,7) given by the prime triplet of the form p, p+2, p+4.
EXAMPLE
5 is a term because 5^3+7^5+11^7 = 19504103 is prime;
11 is a term because 11^3+13^5+17^7 = 410711297 is prime.
MATHEMATICA
Select[Partition[Select[Range[6000], PrimeQ], 3, 1], PrimeQ[#[[1]]^3 + #[[2]]^5 + #[[3]]^7] &][[;; , 1]] (* Amiram Eldar, Oct 11 2021 *)
PROG
(Sage)
def Q(x):
if Primes().unrank(x)^3+Primes().unrank(x+1)^5+Primes().unrank(x+2)^7 in Primes():
return Primes().unrank(x)
A348313 = [Q(x) for x in range(0, 10^3) if Q(x)!=None]
(PARI) isok(p) = if (isprime(p), my(q=nextprime(p+1), r=nextprime(q+1)); isprime(p^3+q^5+r^7)); \\ Michel Marcus, Oct 11 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Dumitru Damian, Oct 11 2021
STATUS
approved