login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A348314
a(n) = n! * Sum_{k=0..n-1} 4^k / k!.
1
0, 1, 10, 78, 568, 4120, 30864, 244720, 2088832, 19389312, 196514560, 2173194496, 26128665600, 339890756608, 4759410116608, 71395178280960, 1142340032364544, 19419853564641280, 349557673401188352, 6641597100292636672, 132831947503410872320, 2789470920661372502016
OFFSET
0,3
FORMULA
E.g.f.: x * exp(4*x) / (1 - x).
a(0) = 0; a(n) = n * (a(n-1) + 4^(n-1)).
a(n) ~ exp(4)*n!. - Stefano Spezia, Oct 11 2021
MATHEMATICA
Table[n! Sum[4^k/k!, {k, 0, n - 1}], {n, 0, 21}]
nmax = 21; CoefficientList[Series[x Exp[4 x]/(1 - x), {x, 0, nmax}], x] Range[0, nmax]!
PROG
(PARI) a(n) = n!*sum(k=0, n-1, 4^k/k!); \\ Michel Marcus, Oct 11 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Oct 11 2021
STATUS
approved