The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A348317 a(n) = A348150(n) - A002275(n) where A002275(n) = R_n is the repunit with n times digit 1. 4
0, 1, 0, 5, 1, 3, 1, 1, 0, 14, 1, 15, 5, 3, 3, 11, 1, 21, 8, 10, 6, 5, 1, 3, 2, 12, 0, 17, 25, 14, 5, 13, 6, 74, 1, 54, 41, 12, 8, 14, 4, 105, 41, 55, 63, 33, 25, 13, 5, 103, 3, 33, 40, 63, 3, 52, 15, 23, 40, 21, 20, 10, 21, 11, 25, 33, 41, 47, 45, 14, 1, 171 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,4
COMMENTS
a(n) measures the gap between the smallest n-digit number not containing the digit 0 and the smallest n-digit Niven number not containing the digit 0.
For more informations and links, see A348150.
a(n) = 0 iff n is in A014950.
LINKS
FORMULA
a(n) = A348150(n) - A002275(n).
EXAMPLE
A348150(4) = 1116 since it is the smallest 4-digit integer not containing the digit 0 that is divisible by the sum of its digits:1116 = (1+1+1+6) * 124; A002275(4) = R_4 = 1111, hence a(4) = 1116 - 1111 = 5.
MATHEMATICA
hQ[n_] := ! MemberQ[(d = IntegerDigits[n]), 0] && Divisible[n, Plus @@ d]; a[n_] := Module[{m= (10^n - 1)/9, k=0}, While[! hQ[m+k], k++]; k]; Array[a, 30] (* Amiram Eldar, Oct 13 2021 *)
PROG
(Python)
def a(n):
s, k = "1"*n, int("1"*n)
while '0' in s or k%sum(map(int, s)): k += 1; s = str(k)
return k - int("1"*n)
print([a(n) for n in range(1, 73)]) # Michael S. Branicky, Oct 12 2021
(PARI) a(n) = my(r=(10^n-1)/9); for(k=r, 10^n-1, if (vecmin(digits(k)) && !(k % sumdigits(k)), return (k-r))); \\ Michel Marcus, Oct 13 2021
CROSSREFS
Sequence in context: A201526 A091384 A011305 * A254378 A134568 A198798
KEYWORD
nonn,base
AUTHOR
Bernard Schott, Oct 12 2021
EXTENSIONS
a(23) and beyond from Michael S. Branicky, Oct 12 2021
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 22 21:38 EDT 2024. Contains 372758 sequences. (Running on oeis4.)