The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A348320 Perfect powers m^k, k >= 2 of palindromes m when m^k is not a palindrome. 2
 16, 25, 27, 32, 36, 49, 64, 81, 125, 128, 216, 243, 256, 512, 625, 729, 1024, 1089, 1296, 1936, 2048, 2187, 2401, 3025, 3125, 4096, 4356, 5929, 6561, 7744, 7776, 8192, 9801, 10648, 15625, 16384, 16807, 17161, 19683, 19881, 22801, 25921, 29241, 32761, 32768, 35937, 36481, 46656 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Seems to be the "converse" of A348319. When m is prime, then we get the subsequence A339624. G. J. Simmons conjectured that there are no palindromes of form n^k for k >= 5 (and n > 1) (see Simmons link p. 98); according to this conjecture, every palindrome^k, k >= 5 is a term. LINKS Table of n, a(n) for n=1..48. Gustavus J. Simmons, Palindromic Powers, J. Rec. Math., Vol. 3, No. 2 (1970), pp. 93-98 [Annotated scanned copy]. EXAMPLE 216 = 6^3, 1936 = 44^2, 4096 = 8^4, 7776 = 6^5, 35937 = 33^3, 117649 = 7^6 are terms. MATHEMATICA seq[max_] := Module[{m = Floor@Sqrt[max], s = {}, n, p}, Do[If[! PalindromeQ[k], Continue[]]; n = Floor@Log[k, max]; Do[If[! PalindromeQ[(p = k^j)], AppendTo[s, p]], {j, 2, n}], {k, 2, m}]; Union[s]]; seq[50000] (* Amiram Eldar, Oct 12 2021 *) PROG (Python) def ispal(n): s = str(n); return s == s[::-1] def aupto(limit): aset, m, mm = set(), 2, 4 while mm <= limit: if ispal(m): mk = mm while mk <= limit: if not ispal(mk): aset.add(mk) mk *= m mm += 2*m + 1 m += 1 return sorted(aset) print(aupto(47000)) # Michael S. Branicky, Oct 12 2021 (PARI) ispal(x) = my(d=digits(x)); d == Vecrev(d); isok(x) = my(q); ispower(x, , &q) && !ispal(x) && ispal(q); \\ Michel Marcus, Oct 14 2021 CROSSREFS Cf. A339624, A348319. Subsequence of A001597. Sequence in context: A071524 A334392 A227651 * A095409 A339624 A111026 Adjacent sequences: A348317 A348318 A348319 * A348321 A348322 A348323 KEYWORD nonn,base AUTHOR Bernard Schott, Oct 12 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 27 16:57 EDT 2024. Contains 372880 sequences. (Running on oeis4.)