

A111026


Perfect powers (A001597) of the form 3p + q + 3, p & q are primes.


1



16, 25, 27, 32, 49, 121, 125, 128, 169, 225, 243, 289, 343, 361, 512, 529, 625, 729, 841, 961, 1000, 1225, 1331, 1369, 1681, 1849, 2025, 2048, 2187, 2197, 2209, 2401, 2809, 3025, 3125, 3375, 3481, 3721, 3969, 4225, 4489, 4913, 5041, 5329, 5625, 5929, 6241
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

The sequence has repetitions since different p's and q's will give the same perfect power. Remove the andmap in the program if you want the repetitions.
Includes all perfect powers, pp, (A001597) congruent +/ 1 (modulo 6). Also if pp9 or pp12 is a prime or if (pp 2)/3 or (pp3)/3 is a prime.
The number of perfect powers of the form 3p + q + 3 <= 10^n: 0,5,21,56,157,433,...,.  Robert G. Wilson v, Jun 21 2006
In the first one million integers there are 1111 perfect powers (A070428) of which only 433 of them are of the form 3p + q + 3.


LINKS



FORMULA

a(n)=3p+q+3 where p and q are primes and a(n) is a perfect power.


EXAMPLE

a(5)=49 since 3*3+37+3=49 = 5*3+31+3 = 3*11+13+3 = 3*13+7+7 = 7^2.
6859 = 19^3 is in the sequence because there are 116 different ways to combine primes of the form 3p + q + 3, beginning with p=5 & q=6841 and ending with p=2281 & q=13.


MAPLE

with(numtheory); egcd := proc(n) local L; L:=map(proc(z) z[2] end, ifactors(n)[2]); igcd(op(L)) end: PW:=[]: for z to 1 do for j from 1 to 100 do for k from 1 to 100 do p:=ithprime(j); q:=ithprime(k); x:=3*p+q+3; if egcd(x)>1 and andmap(proc(w) not(w[3]=x) end, PW) then PW:=[op(PW), [p, q, x]] fi od od od; PW; map(proc(z) z[3] end, PW);


MATHEMATICA

fQ[n_] := GCD @@ Last /@ FactorInteger@n > 1; lst = {}; Do[p = Prime@j; q = Prime@k; x = 3p + q + 3; If[fQ@x, AppendTo[lst, x]], {j, 340}, {k, PrimePi[6856  3Prime@j]}]; Union@lst (* Robert G. Wilson v *)


CROSSREFS



KEYWORD

nonn


AUTHOR



EXTENSIONS



STATUS

approved



