login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A217973
Niven (or Harshad) numbers not containing the digit 0.
6
1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 18, 21, 24, 27, 36, 42, 45, 48, 54, 63, 72, 81, 84, 111, 112, 114, 117, 126, 132, 133, 135, 144, 152, 153, 156, 162, 171, 192, 195, 198, 216, 222, 224, 225, 228, 234, 243, 247, 252, 261, 264, 266, 285, 288, 312, 315, 322, 324, 333, 336
OFFSET
1,2
COMMENTS
Andreescu & Andrica prove that this sequence is infinite.
For each positive integer n, there exists a n-digit Niven (or Harshad) number not containing the digit 0 (see A348318 for more explanations and links). - Bernard Schott, Oct 20 2021
REFERENCES
Titu Andreescu and Dorin Andrica, Number Theory, Structures, Examples, and Problems, Problem 5.2.3 on pages 109-110.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
MAPLE
filter:= proc(n) local L;
L:= convert(n, base, 10);
not has(L, 0) and n mod convert(L, `+`) = 0
end proc:
select(filter, [$1..1000]); # Robert Israel, Apr 01 2016
MATHEMATICA
Select[Range[400], IntegerQ[ #/(Plus @@ IntegerDigits[#])] && DigitCount[#, 10, 0] == 0 &] (* Alonso del Arte, Oct 16 2012 *)
PROG
(PARI) is(n)=vecsort(digits(n))[1]&&n%sumdigits(n)==0
(Python)
def ok(n): s = str(n); return '0' not in s and n%sum(map(int, s)) == 0
print([k for k in range(337) if ok(k)]) # Michael S. Branicky, Oct 20 2021
CROSSREFS
Intersection of A005349 and A052382.
A216405 is a subsequence.
Sequence in context: A343680 A114440 A334416 * A097518 A097569 A308561
KEYWORD
nonn,base,easy
AUTHOR
STATUS
approved