This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A114440 Numbers which divided by the sum of their digits (Harshad or Niven numbers) give integers which are also divided by the sum of their digits (until a single-digit Harshad remains). 7
 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 18, 21, 24, 27, 36, 42, 45, 48, 54, 63, 72, 81, 84, 108, 162, 216, 243, 324, 378, 405, 432, 486, 648, 756, 864, 972, 1296, 1458, 1944, 2916, 3402, 4374, 5832, 6804, 7290, 8748, 11664, 13122, 13608, 15552, 17496, 23328, 26244 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS The sequence is finite with a(15095), a 1434-digit number, being the final term. - Hans Havermann and Ray Chandler, Jan 21 2014 LINKS Donovan Johnson, Table of n, a(n) for n = 1..235 (terms < 10^17) Hans Havermann and Ray Chandler, Table of n, a(n) for n = 1..15095 (9.3 MB file) Kornel, Ojciec i Syn. EXAMPLE The number 216 is a term of the sequence because it is divisible by the sum of its digits: 2+1+6=9; 216/9=24. Also, the successive quotients are divisible by the sum of their digits, until a single-digit Harshad remains: 24: 2+4=6; 24/6=4 and 4: 4/4=1. MATHEMATICA s=w={1}; Do[t={}; Do[v=s[[k]]; u={}; Do[If[Total[IntegerDigits[c*v]]==c, AppendTo[u, c*v]], {c, 2, 7000}]; t=Join[t, u], {k, Length[s]}]; s=Sort[t]; w=Join[w, s], {440}]; Union[w] (* Hans Havermann, Jan 21 2014 *) PROG (PARI) v=vector(118); for(n=1, 9, v[n]=n; print1(n ", ")); c=9; for(n=10, 10^9, d=length(Str(n)); m=n; s=0; for(j=1, d, s=s+m%10; m=m\10); if(s==1, next); if(n%s==0, m=n/s, next); forstep(j=c, 1, -1, if(v[j]<=m, if(v[j]==m, c++; v[c]=n; print1(n ", ")); next(2)))) /* Donovan Johnson, Apr 09 2013 */ CROSSREFS Cf. A005349, A097569, A235600, A235601, A236295, A236362, A236363, A236385. Sequence in context: A079238 A079042 A193455 * A217973 A097518 A097569 Adjacent sequences:  A114437 A114438 A114439 * A114441 A114442 A114443 KEYWORD nonn,base,fini,full AUTHOR Piotr K. Olszewski (piotrkornelolszewski(AT)poczta.onet.pl), Feb 14 2006 EXTENSIONS Offset corrected by Donovan Johnson, Apr 09 2013 a(54)-a(235) from Donovan Johnson, Apr 09 2013 a(236)-a(15095) from Hans Havermann and Ray Chandler, Jan 21 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 18 05:14 EDT 2019. Contains 328145 sequences. (Running on oeis4.)