login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A316595
a(n) equals the coefficient of x^n in Sum_{m>=0} (x^m + 5 + 1/x^m)^m for n >= 1.
8
1, 10, 78, 561, 3885, 26565, 180285, 1221554, 8272252, 56063900, 380361212, 2583878630, 17575724491, 119705606020, 816297170565, 5572946307857, 38088275031435, 260576838539320, 1784382167211378, 12229792806897910, 83888652677221112, 575858960208964685, 3955813057814040153, 27192049709537787123, 187032147327469550926, 1287187641890879422980, 8863461073824746853534, 61064188079233277265138, 420899733623010047381885, 2902469328540659624278455
OFFSET
1,2
COMMENTS
The coefficient of 1/x^n in Sum_{m>=0} (x^m + 5 + 1/x^m)^m equals a(n) for n > 0, while the constant term in the sum increases without limit.
a(n) = Sum_{k=0..n-1} A316590(n,k) * 5^k for n >= 1.
LINKS
FORMULA
a(n) ~ 7^(n + 1/2) / (2*sqrt(Pi*n)). - Vaclav Kotesovec, Jul 10 2018
EXAMPLE
G.f.: A(x) = x + 10*x^2 + 78*x^3 + 561*x^4 + 3885*x^5 + 26565*x^6 + 180285*x^7 + 1221554*x^8 + 8272252*x^9 + 56063900*x^10 + ...
such that Sum_{m>=0} (x^m + 5 + 1/x^m)^m = A(x) + A(1/x) + (infinity)*x^0.
PROG
(PARI) {a(n) = polcoeff( sum(m=1, n, (x^-m + 5 + x^m)^m +x*O(x^n)), n, x)}
for(n=1, 40, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 08 2018
STATUS
approved