login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A153596
a(n) = ((5 + sqrt(3))^n - (5 - sqrt(3))^n)/(2*sqrt(3)).
3
1, 10, 78, 560, 3884, 26520, 179752, 1214080, 8186256, 55152800, 371430368, 2500942080, 16837952704, 113358801280, 763153053312, 5137636904960, 34587001876736, 232842006858240, 1567506027294208, 10552536122060800, 71040228620135424
OFFSET
1,2
COMMENTS
Third binomial transform of A054485. Fifth binomial transform of A162813 preceded by 1.
Lim_{n -> infinity} a(n)/a(n-1) = 5 + sqrt(3) = 6.73205080756887729....
FORMULA
G.f.: x/(1 - 10*x + 22*x^2). - Klaus Brockhaus, Dec 31 2008 [corrected Oct 11 2009]
a(n) = 10*a(n-1) - 22*a(n-2) for n > 1; a(0)=0, a(1)=1. - Philippe Deléham, Jan 01 2009
E.g.f.: sinh(sqrt(3)*x)*exp(5*x)/sqrt(3). - Ilya Gutkovskiy, Aug 23 2016
MATHEMATICA
Table[Simplify[((5+Sqrt[3])^n -(5-Sqrt[3])^n)/(2*Sqrt[3])], {n, 1, 25}] (* Vladimir Joseph Stephan Orlovsky, Jan 27 2011, modified by G. C. Greubel, Jun 01 2019 *)
LinearRecurrence[{10, -22}, {1, 10}, 25] (* G. C. Greubel, Aug 22 2016 *)
PROG
(Magma) Z<x>:= PolynomialRing(Integers()); N<r>:=NumberField(x^2-3); S:=[ ((5+r)^n-(5-r)^n)/(2*r): n in [1..25] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Dec 31 2008
(Sage) [lucas_number1(n, 10, 22) for n in range(1, 25)] # Zerinvary Lajos, Apr 26 2009
(Magma) I:=[1, 10]; [n le 2 select I[n] else 10*Self(n-1)-22*Self(n-2): n in [1..25]]; // Vincenzo Librandi, Aug 23 2016
(PARI) my(x='x+O('x^25)); Vec(x/(1-10*x+22*x^2)) \\ G. C. Greubel, Jun 01 2019
CROSSREFS
Cf. A002194 (decimal expansion of sqrt(3)), A054485, A162813.
Sequence in context: A080618 A298270 A082136 * A316595 A348314 A056986
KEYWORD
nonn
AUTHOR
Al Hakanson (hawkuu(AT)gmail.com), Dec 29 2008
EXTENSIONS
Extended beyond a(7) by Klaus Brockhaus, Dec 31 2008
Edited by Klaus Brockhaus, Oct 11 2009
STATUS
approved