login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A153599
a(n) = ((8 + sqrt(3))^n - (8 - sqrt(3))^n)/(2*sqrt(3)).
1
1, 16, 195, 2144, 22409, 227760, 2277211, 22542016, 221762385, 2173135184, 21242657459, 207321273120, 2021338264921, 19694814578416, 191815399094475, 1867662696228224, 18181863794888609, 176982396248296080, 1722624648484532131, 16766068204606453216
OFFSET
1,2
COMMENTS
lim_{n -> infinity} a(n)/a(n-1) = 8 + sqrt(3) = 9.73205080756887729....
FORMULA
G.f.: x/(1 - 16*x + 61*x^2). - Klaus Brockhaus, Dec 31 2008, (corrected Oct 11 2009)
a(n) = 16*a(n-1) - 61*a(n-2) for n>1; a(0)=0, a(1)=1. - Philippe Deléham, Jan 01 2009
MATHEMATICA
Join[{a=1, b=16}, Table[c=16*b-61*a; a=b; b=c, {n, 40}]] (* Vladimir Joseph Stephan Orlovsky, Feb 08 2011*)
Simplify/@Table[c=Sqrt[3]; ((8+c)^n-(8-c)^n)/(2c), {n, 20}] (* or *) LinearRecurrence[{16, -61}, {1, 16}, 20] (* Harvey P. Dale, Sep 24 2012 *)
PROG
(Magma) Z<x>:= PolynomialRing(Integers()); N<r>:=NumberField(x^2-3); S:=[ ((8+r)^n-(8-r)^n)/(2*r): n in [1..18] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Dec 31 2008
(Magma) I:=[1, 16]; [n le 2 select I[n] else 16*Self(n-1)-61*Self(n-2): n in [1..25]]; // Vincenzo Librandi, Aug 23 2016
CROSSREFS
Cf. A002194 (decimal expansion of sqrt(3)).
Sequence in context: A292785 A081185 A159517 * A016280 A281946 A077363
KEYWORD
nonn
AUTHOR
Al Hakanson (hawkuu(AT)gmail.com), Dec 29 2008
EXTENSIONS
Extended beyond a(7) by Klaus Brockhaus, Dec 31 2008
Edited by Klaus Brockhaus, Oct 11 2009
STATUS
approved