OFFSET
0,2
COMMENTS
a(n) is the binomial transform of A053486. More generally, for every integer k, the sequence whose e.g.f is exp((k+1)*x)/(1-x) is the binomial transform of the sequence whose e.g.f is exp(k*x)/(1-x). - Groux Roland, Mar 23 2011
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..200
J. W. Layman, The Hankel Transform and Some of its Properties, J. Integer Sequences, 4 (2001), #01.1.5.
FORMULA
a(n) is the permanent of the n X n matrix with 5's on the diagonal and 1's elsewhere. a(n) = Sum_{k=0..n} A008290(n, k)*5^k. - Philippe Deléham, Dec 12 2003
E.g.f.: exp(4x)/(1-x)=1/E(0); E(k)=1-x/(1-4/(4+(k+1)/E(k+1))); (continued fraction). - Sergei N. Gladkovskii, Nov 21 2011
G.f.: 1/Q(0), where Q(k)= 1 - 4*x - x*(k+1)/(1-x*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Apr 19 2013
a(n) ~ n! * exp(4). - Vaclav Kotesovec, Jun 21 2013
a(n) = exp(4)*Gamma(n+1,4). - Gerry Martens, Jul 24 2015
a(n) = KummerU(-n, -n, 4). - Peter Luschny, May 10 2022
MAPLE
F(x) := exp(4*x)/(1-x): f[0]:=F(x): for n from 1 to 20 do f[n]:=diff(f[n-1], x) od: x:=0: seq(f[n], n=0..20); # Zerinvary Lajos, Apr 03 2009
seq(simplify(KummerU(-n, -n, 4)), n = 0..20); # Peter Luschny, May 10 2022
MATHEMATICA
With[{nn=30}, CoefficientList[Series[Exp[4x]/(1-x), {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Jun 09 2013 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 15 2000
STATUS
approved