login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A053487
E.g.f.: exp(4x)/(1-x).
14
1, 5, 26, 142, 824, 5144, 34960, 261104, 2154368, 19651456, 197563136, 2177388800, 26145442816, 339957865472, 4759678552064, 71396252022784, 1142344327331840, 19419870744510464, 349557742120665088, 6641597375170543616, 132831948602922500096
OFFSET
0,2
COMMENTS
a(n) is the binomial transform of A053486. More generally, for every integer k, the sequence whose e.g.f is exp((k+1)*x)/(1-x) is the binomial transform of the sequence whose e.g.f is exp(k*x)/(1-x). - Groux Roland, Mar 23 2011
LINKS
J. W. Layman, The Hankel Transform and Some of its Properties, J. Integer Sequences, 4 (2001), #01.1.5.
FORMULA
a(n) is the permanent of the n X n matrix with 5's on the diagonal and 1's elsewhere. a(n) = Sum_{k=0..n} A008290(n, k)*5^k. - Philippe Deléham, Dec 12 2003
E.g.f.: exp(4x)/(1-x)=1/E(0); E(k)=1-x/(1-4/(4+(k+1)/E(k+1))); (continued fraction). - Sergei N. Gladkovskii, Nov 21 2011
G.f.: 1/Q(0), where Q(k)= 1 - 4*x - x*(k+1)/(1-x*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Apr 19 2013
a(n) ~ n! * exp(4). - Vaclav Kotesovec, Jun 21 2013
a(n) = exp(4)*Gamma(n+1,4). - Gerry Martens, Jul 24 2015
a(n) = KummerU(-n, -n, 4). - Peter Luschny, May 10 2022
MAPLE
F(x) := exp(4*x)/(1-x): f[0]:=F(x): for n from 1 to 20 do f[n]:=diff(f[n-1], x) od: x:=0: seq(f[n], n=0..20); # Zerinvary Lajos, Apr 03 2009
seq(simplify(KummerU(-n, -n, 4)), n = 0..20); # Peter Luschny, May 10 2022
MATHEMATICA
With[{nn=30}, CoefficientList[Series[Exp[4x]/(1-x), {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Jun 09 2013 *)
CROSSREFS
Sequence in context: A363308 A104498 A045379 * A277957 A183161 A351151
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 15 2000
STATUS
approved