login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A053486
E.g.f.: exp(3x)/(1-x).
24
1, 4, 17, 78, 393, 2208, 13977, 100026, 806769, 7280604, 72865089, 801693126, 9620848953, 125072630712, 1751021612937, 26265338542962, 420245459734113, 7144172944620084, 128595113390582001, 2443307155583319486, 48866143115153174121
OFFSET
0,2
LINKS
J. W. Layman, The Hankel Transform and Some of its Properties, J. Integer Sequences, 4 (2001), #01.1.5.
FORMULA
a(n) is the permanent of the n X n matrix with 4's on the diagonal and 1's elsewhere. a(n) = Sum(k=0..n, A008290(n, k)*4^k). - Philippe Deléham, Dec 12 2003
a(n) = Sum[(n! / k!) * 3^k {k=0...n}]. - Ross La Haye, Sep 21 2004
a(n) = sum{k=0..n, k!*C(n, k)3^(n-k)}. - Paul Barry, Apr 22 2005
G.f.: hypergeom([1,1],[],x/(1-3*x))/(1-3*x). - Mark van Hoeij, Nov 08 2011
D-finite with recurrence -a(n) +(n+3)*a(n-1) +3*(1-n)*a(n-2)=0. - R. J. Mathar, Nov 14 2011. This recurrence follows from the Wilf-Zeilberger (WZ) proof technique applied to the sum: Sum[k!* C(n,k)*3^(n-k), {k=0...n}]. - T. Amdeberhan, Jul 23 2012
E.g.f.: 1/E(0) where E(k)=1-x/(1-3/(3+(k+1)/E(k+1))); (continued fraction). - Sergei N. Gladkovskii, Nov 21 2011
G.f.: 1/Q(0), where Q(k)= 1 - 3*x - x*(k+1)/(1-x*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Apr 20 2013
a(n) ~ n! * exp(3). - Vaclav Kotesovec, Jun 01 2013
From Peter Bala, Sep 25 2013: (Start)
a(n) = n*a(n-1) + 3^n with a(0) = 1.
a(n) = n!*e^3 - sum {k >= 0} 3^(n + k + 1)/((n + 1)*...*(n + k + 1))
= n!*e^3 - e^3*( int {t = 0..3} t^n*exp(-t) dt )
= e^3*( int {t = 3..inf} t^n*exp(-t) dt )
= e^3*( int {t = 0..inf} t^n*exp(-t)*Heaviside(t-3) dt ),
an integral representation of a(n) as the n-th moment of a nonnegative function on the positive half-axis.
Mathar's second-order recurrence above a(n) = (n + 3)*a(n-1) - 3*(n - 1)*a(n-2) has n! as a second solution. This yields the finite continued fraction expansion a(n)/n! = 1/(1 - 3/(4 - 3/(5 - 6/(6 - ...- 3*(n - 1)/(n + 3))))) valid for n >= 2. Letting n tend to infinity gives the infinite continued fraction expansion e^3 = 1/(1 - 3/(4 - 3/(5 - 6/(6 - ...- 3*(n - 1)/(n + 3 - ...))))). (End)
G.f.: 1/Q(0), where Q(k) = 1 - 2*x*(k+2) - x^2*(k+1)^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Sep 30 2013
a(n) = exp(3)*Gamma(1+n,3). - Peter Luschny, Dec 18 2017
a(n) = KummerU(-n, -n, 3). - Peter Luschny, May 10 2022
MAPLE
G(x):=exp(3*x)/(1-x): g[0]:=G(x): for n from 1 to 20 do g[n]:=diff(g[n-1], x) od: x:=0: seq(g[n], n=0..20); # Zerinvary Lajos, Apr 03 2009
A053486 := n -> exp(3)*GAMMA(1+n, 3):
seq(simplify(A053486(n)), n=0..20); # Peter Luschny, Dec 18 2017
seq(simplify(KummerU(-n, -n, 3)), n = 0..20); # Peter Luschny, May 10 2022
MATHEMATICA
RecurrenceTable[{a[0]==1, a[n]== n*a[n-1] + 3^n}, a, {n, 200}] (* Vincenzo Librandi, Nov 15 2012 *)
With[{nn=20}, CoefficientList[Series[Exp[3x]/(1-x), {x, 0, nn}], x] Range[ 0, nn]!] (* Harvey P. Dale, Aug 03 2017 *)
PROG
(PARI) x='x+O('x^66); Vec(serlaplace(exp(3*x)/(1-x))) \\ Joerg Arndt, Apr 20 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 15 2000
STATUS
approved