login
A053489
Expansion of e.g.f.: (1-x)^(-2x).
7
1, 0, 4, 6, 64, 300, 2568, 20160, 193856, 1989792, 22687200, 279956160, 3737966208, 53589444480, 821522026752, 13407498599040, 232106716968960, 4248256958023680, 81968803604600832, 1662870215019018240, 35384007384670648320, 788053048823608565760
OFFSET
0,3
REFERENCES
R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.3.
LINKS
FORMULA
E.g.f.: (1-x)^(-2*x).
a(n) = (-1)^n*Sum_{k=0..floor(n/2)} 2^k*binomial(n, k)*k!*Stirling1(n-k, k). - Vladeta Jovovic, Dec 19 2004
a(n) ~ n! * n * (1 + (1-2*log(n)-2*gamma)/n), where gamma is the Euler-Mascheroni constant (A001620). - Vaclav Kotesovec, Apr 21 2014
MATHEMATICA
CoefficientList[Series[(1-x)^(-2*x), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Apr 21 2014 *)
PROG
(PARI) x='x+O('x^30); Vec(serlaplace((1-x)^(-2*x))) \\ G. C. Greubel, Aug 29 2018
(Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!((1-x)^(-2*x))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 29 2018
CROSSREFS
Sequence in context: A154668 A363861 A189790 * A012898 A013080 A322150
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 15 2000
STATUS
approved