login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A053489
Expansion of e.g.f.: (1-x)^(-2x).
7
1, 0, 4, 6, 64, 300, 2568, 20160, 193856, 1989792, 22687200, 279956160, 3737966208, 53589444480, 821522026752, 13407498599040, 232106716968960, 4248256958023680, 81968803604600832, 1662870215019018240, 35384007384670648320, 788053048823608565760
OFFSET
0,3
REFERENCES
R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.3.
LINKS
FORMULA
E.g.f.: (1-x)^(-2*x).
a(n) = (-1)^n*Sum_{k=0..floor(n/2)} 2^k*binomial(n, k)*k!*Stirling1(n-k, k). - Vladeta Jovovic, Dec 19 2004
a(n) ~ n! * n * (1 + (1-2*log(n)-2*gamma)/n), where gamma is the Euler-Mascheroni constant (A001620). - Vaclav Kotesovec, Apr 21 2014
MATHEMATICA
CoefficientList[Series[(1-x)^(-2*x), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Apr 21 2014 *)
PROG
(PARI) x='x+O('x^30); Vec(serlaplace((1-x)^(-2*x))) \\ G. C. Greubel, Aug 29 2018
(Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!((1-x)^(-2*x))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 29 2018
CROSSREFS
Sequence in context: A154668 A363861 A189790 * A012898 A013080 A322150
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 15 2000
STATUS
approved