login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A053488
E.g.f.: exp(exp(sinh(x))-1)-1.
2
0, 1, 2, 6, 23, 103, 535, 3153, 20676, 149148, 1172343, 9960085, 90864801, 885278605, 9167936406, 100508961982, 1162366436355, 14136151459043, 180287711599455, 2405321659729837, 33495442060505752, 485880832780748932
OFFSET
0,3
COMMENTS
a(n) is the number of pairs (d,d') of set partitions of {1,2,...,n} such that d is finer than d' and all block sizes of d are odd. - Geoffrey Critzer, Dec 28 2011
REFERENCES
R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.1.14.
LINKS
Vladimir Kruchinin, D. V. Kruchinin, Composita and their properties, arXiv:1103.2582 [math.CO], 2011.
FORMULA
a(n) = Sum_{m=1..n} ( Sum_{k} 1/(2^k*k!)*Sum_{i=0..k} (-1)^i*binomial(k,i)*(k-2*i)^n)*stirling2(k,m),k,m,n)), n>0. - Vladimir Kruchinin, Sep 10 2010
MATHEMATICA
nn = 21; a = Sinh[x]; Range[0, nn]! CoefficientList[Series[Exp[Exp[a] - 1] - 1, {x, 0, nn}], x] (* Geoffrey Critzer, Dec 28 2011 *)
PROG
(Maxima) a(n):=sum(sum(1/(2^k*k!)*sum((-1)^i*binomial(k, i)*(k-2*i)^n, i, 0, k)*stirling2(k, m), k, m, n), m, 1, n); /* Vladimir Kruchinin, Sep 10 2010 */
CROSSREFS
Sequence in context: A263778 A352854 A378608 * A338279 A117106 A137534
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 15 2000
STATUS
approved