OFFSET
0,3
COMMENTS
a(n) is the number of pairs (d,d') of set partitions of {1,2,...,n} such that d is finer than d' and all block sizes of d are odd. - Geoffrey Critzer, Dec 28 2011
REFERENCES
R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.1.14.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..400
Vladimir Kruchinin, D. V. Kruchinin, Composita and their properties, arXiv:1103.2582 [math.CO], 2011.
FORMULA
a(n) = Sum_{m=1..n} ( Sum_{k} 1/(2^k*k!)*Sum_{i=0..k} (-1)^i*binomial(k,i)*(k-2*i)^n)*stirling2(k,m),k,m,n)), n>0. - Vladimir Kruchinin, Sep 10 2010
MATHEMATICA
nn = 21; a = Sinh[x]; Range[0, nn]! CoefficientList[Series[Exp[Exp[a] - 1] - 1, {x, 0, nn}], x] (* Geoffrey Critzer, Dec 28 2011 *)
PROG
(Maxima) a(n):=sum(sum(1/(2^k*k!)*sum((-1)^i*binomial(k, i)*(k-2*i)^n, i, 0, k)*stirling2(k, m), k, m, n), m, 1, n); /* Vladimir Kruchinin, Sep 10 2010 */
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 15 2000
STATUS
approved