OFFSET
0,2
COMMENTS
Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A289780 for a guide to related sequences.
LINKS
Michael De Vlieger, Table of n, a(n) for n = 0..448
Mikhail Khovanov, Victor Ostrik and Yakov Kononov, Two-dimensional topological theories, rational functions and their tensor envelopes, arXiv:2011.14758 [math.QA], 2020.
MATHEMATICA
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Aug 14 2017
STATUS
approved