login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A181939
Number of pairs of set partitions of {1,2,...,n} whose meet is {{1},{2},...,{n}} and join is {{1,2,...,n}}.
19
1, 1, 2, 8, 56, 552, 7202, 118456, 2369922, 56230544, 1552048082, 49080888144, 1756527398738, 70427165428648, 3136819046716266, 154090456510590632, 8296738497931578818, 487014208107376581984, 31018372994440588508642, 2134584265273475942046304
OFFSET
0,3
LINKS
E. R. Canfield, Meet and join in the partition lattice, Electronic Journal of Combinatorics, 8 (2001) R15.
B. Pittel, Where the typical set partitions meet and join, Electronic Journal of Combinatorics, 7 (2000) R5.
Frank Simon, Algebraic Methods for Computing the Reliability of Networks, Dissertation, Doctor Rerum Naturalium (Dr. rer. nat.), Fakultät Mathematik und Naturwissenschaften der Technischen Universität Dresden, 2012. See Table 3.3. - N. J. A. Sloane, Jan 04 2013
FORMULA
E.g.f.: 1+log(M(x)), where M(x) is the e.g.f. of A059849 of all pairs of set partitions of {1,2,...,n} whose meet is {{1},{2},...,{n}}.
a(n) = m(n) - Sum_{k=1..n-1} C(n-1,k)*m(k)*a(n-k), where m(n) = A059849(n) of all pairs of set partitions of an n-element set having meet {{1},{2},...,{n}}.
EXAMPLE
For n = 2 there are exactly the following two pairs ({{1,2}},{{1},{2}}), ({{1},{2}},{{1,2}}) satisfying the imposed conditions.
MAPLE
with(combinat):
m:= proc(n) option remember; add(stirling1(n, k)*bell(k)^2, k=0..n) end:
a:= proc(n) option remember;
m(n) -add(binomial(n-1, k)*m(k)*a(n-k), k=1..n-1)
end:
seq(a(n), n=0..20); # Alois P. Heinz, Apr 20 2012
MATHEMATICA
m[n_] := m[n] = Sum[StirlingS1[n, k]*BellB[k]^2, {k, 0, n}]; a[n_] := a[n] = m[n] - Sum[ Binomial[n-1, k]*m[k]*a[n-k], {k, 1, n-1}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jul 15 2015, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A201128 A277498 A097691 * A124212 A326009 A372160
KEYWORD
nonn,easy
AUTHOR
Alexander Steinhardt (asteinh1(AT)hs-mittweida.de), Jens Schreiter (jschrei1(AT)hs-mittweida.de), Frank Simon, Apr 03 2012
EXTENSIONS
Terms corrected and more terms added, Alois P. Heinz, Apr 20 2012
STATUS
approved