login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of pairs of set partitions of {1,2,...,n} whose meet is {{1},{2},...,{n}} and join is {{1,2,...,n}}.
19

%I #57 Oct 15 2024 20:27:23

%S 1,1,2,8,56,552,7202,118456,2369922,56230544,1552048082,49080888144,

%T 1756527398738,70427165428648,3136819046716266,154090456510590632,

%U 8296738497931578818,487014208107376581984,31018372994440588508642,2134584265273475942046304

%N Number of pairs of set partitions of {1,2,...,n} whose meet is {{1},{2},...,{n}} and join is {{1,2,...,n}}.

%H Alois P. Heinz, <a href="/A181939/b181939.txt">Table of n, a(n) for n = 0..325</a>

%H E. R. Canfield, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v8i1r15">Meet and join in the partition lattice</a>, Electronic Journal of Combinatorics, 8 (2001) R15.

%H B. Pittel, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v7i1r5">Where the typical set partitions meet and join</a>, Electronic Journal of Combinatorics, 7 (2000) R5.

%H Frank Simon, <a href="https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa-101154">Algebraic Methods for Computing the Reliability of Networks</a>, Dissertation, Doctor Rerum Naturalium (Dr. rer. nat.), Fakultät Mathematik und Naturwissenschaften der Technischen Universität Dresden, 2012. See Table 3.3. - _N. J. A. Sloane_, Jan 04 2013

%F E.g.f.: 1+log(M(x)), where M(x) is the e.g.f. of A059849 of all pairs of set partitions of {1,2,...,n} whose meet is {{1},{2},...,{n}}.

%F a(n) = m(n) - Sum_{k=1..n-1} C(n-1,k)*m(k)*a(n-k), where m(n) = A059849(n) of all pairs of set partitions of an n-element set having meet {{1},{2},...,{n}}.

%e For n = 2 there are exactly the following two pairs ({{1,2}},{{1},{2}}), ({{1},{2}},{{1,2}}) satisfying the imposed conditions.

%p with(combinat):

%p m:= proc(n) option remember; add(stirling1(n, k)*bell(k)^2, k=0..n) end:

%p a:= proc(n) option remember;

%p m(n) -add(binomial(n-1,k)*m(k)*a(n-k), k=1..n-1)

%p end:

%p seq(a(n), n=0..20); # _Alois P. Heinz_, Apr 20 2012

%t m[n_] := m[n] = Sum[StirlingS1[n, k]*BellB[k]^2, {k, 0, n}]; a[n_] := a[n] = m[n] - Sum[ Binomial[n-1, k]*m[k]*a[n-k], {k, 1, n-1}]; Table[a[n], {n, 0, 30}] (* _Jean-François Alcover_, Jul 15 2015, after _Alois P. Heinz_ *)

%Y Cf. A059849, A060639.

%K nonn,easy

%O 0,3

%A Alexander Steinhardt (asteinh1(AT)hs-mittweida.de), Jens Schreiter (jschrei1(AT)hs-mittweida.de), _Frank Simon_, Apr 03 2012

%E Terms corrected and more terms added, _Alois P. Heinz_, Apr 20 2012