OFFSET
1,1
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
T. D. Noe, Table of n, a(n) for n = 1..200
C. Domb and A. J. Barrett, Enumeration of ladder graphs, Discrete Math. 9 (1974), 341-358.
C. Domb & A. J. Barrett, Enumeration of ladder graphs, Discrete Math. 9 (1974), 341-358. (Annotated scanned copy)
C. Domb & A. J. Barrett, Notes on Table 2 in "Enumeration of ladder graphs", Discrete Math. 9 (1974), 55. (Annotated scanned copy)
FORMULA
a(n) = (3/2)*4^n*Gamma(1/2+n)/(sqrt(Pi)*Gamma(1+n)). - Peter Luschny, Dec 14 2015
From Stefano Spezia, Jul 05 2021: (Start)
O.g.f.: 6*x/((1 - sqrt(1 - 4*x))*sqrt(1 - 4*x)) - 3.
E.g.f.: 3*(exp(2*x)*I_0(2*x) - 1)/2, where I_n(x) is the modified Bessel function of the first kind.
a(n) ~ 3*4^n/(2*sqrt(n*Pi)). (End)
MAPLE
a := n -> (3/2)*4^n*GAMMA(1/2+n)/(sqrt(Pi)*GAMMA(1+n)):
seq(a(n), n=1..26); # Peter Luschny, Dec 14 2015
MATHEMATICA
Table[3*Binomial[2*n - 1, n], {n, 20}] (* T. D. Noe, Oct 07 2013 *)
PROG
(PARI) a(n) = 3*binomial(2*n-1, n) \\ Charles R Greathouse IV, Oct 23 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Jon E. Schoenfield, Mar 26 2010
STATUS
approved