%I M2814 #34 Oct 23 2023 12:38:47
%S 3,9,30,105,378,1386,5148,19305,72930,277134,1058148,4056234,15600900,
%T 60174900,232676280,901620585,3500409330,13612702950,53017895700,
%U 206769793230,807386811660,3156148445580,12350146091400,48371405524650,189615909656628,743877799422156
%N a(n) = 3*binomial(2n-1,n).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H T. D. Noe, <a href="/A003409/b003409.txt">Table of n, a(n) for n = 1..200</a>
%H C. Domb and A. J. Barrett, <a href="http://dx.doi.org/10.1016/0012-365X(74)90081-8">Enumeration of ladder graphs</a>, Discrete Math. 9 (1974), 341-358.
%H C. Domb & A. J. Barrett, <a href="/A003408/a003408.pdf">Enumeration of ladder graphs</a>, Discrete Math. 9 (1974), 341-358. (Annotated scanned copy)
%H C. Domb & A. J. Barrett, <a href="/A001764/a001764.pdf">Notes on Table 2 in "Enumeration of ladder graphs"</a>, Discrete Math. 9 (1974), 55. (Annotated scanned copy)
%F a(n) = (3/2)*4^n*Gamma(1/2+n)/(sqrt(Pi)*Gamma(1+n)). - _Peter Luschny_, Dec 14 2015
%F From _Stefano Spezia_, Jul 05 2021: (Start)
%F O.g.f.: 6*x/((1 - sqrt(1 - 4*x))*sqrt(1 - 4*x)) - 3.
%F E.g.f.: 3*(exp(2*x)*I_0(2*x) - 1)/2, where I_n(x) is the modified Bessel function of the first kind.
%F a(n) ~ 3*4^n/(2*sqrt(n*Pi)). (End)
%p a := n -> (3/2)*4^n*GAMMA(1/2+n)/(sqrt(Pi)*GAMMA(1+n)):
%p seq(a(n), n=1..26); # _Peter Luschny_, Dec 14 2015
%t Table[3*Binomial[2*n - 1, n], {n, 20}] (* _T. D. Noe_, Oct 07 2013 *)
%o (PARI) a(n) = 3*binomial(2*n-1,n) \\ _Charles R Greathouse IV_, Oct 23 2023
%Y Equals 3 * A001700.
%K nonn
%O 1,1
%A _N. J. A. Sloane_
%E More terms from _Jon E. Schoenfield_, Mar 26 2010