OFFSET
0,2
COMMENTS
From Emeric Deutsch, Feb 15 2010: (Start)
a(n) is the number of binary words of length n that have no pair of adjacent 1's and have no 0000 subwords. Example: a(4)=7 because we have 0101, 1010, 0010, 1001, 0100, 0001, and 1000.
a(n) = A171855(n,0). (End)
a(n) is the number of solus bitstrings of length n with no runs of 4 zeros. - Steven Finch, Mar 25 2020
REFERENCES
R. K. Guy, personal communication.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Steven Finch, Cantor-solus and Cantor-multus distributions, arXiv:2003.09458 [math.CO], 2020.
R. K. Guy, Letter to N. J. A. Sloane, Apr 1975
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
Index entries for linear recurrences with constant coefficients, signature (1,0,1).
FORMULA
a(n) = a(n-1) + a(n-3) for n>3, see also A000930. - Reinhard Zumkeller, Oct 26 2005
MAPLE
G:=series((1+x)*(1+x^2)/(1-x-x^3), x=0, 42): 1, seq(coeff(G, x^n), n=1..38);
A003410:=-(1+z)*(1+z**2)/(-1+z+z**3); # Simon Plouffe in his 1992 dissertation
MATHEMATICA
Join[{1}, LinearRecurrence[{1, 0, 1}, {2, 3, 5}, 80]] (* Vladimir Joseph Stephan Orlovsky, Feb 11 2012 *)
PROG
(PARI) a(n)=([0, 1, 0; 0, 0, 1; 1, 0, 1]^n*[1; 2; 3])[1, 1] \\ Charles R Greathouse IV, Mar 25 2020
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from Emeric Deutsch, Dec 11 2004
STATUS
approved