login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A003410 Expansion of (1+x)(1+x^2)/(1-x-x^3).
(Formerly M0648)
15
1, 2, 3, 5, 7, 10, 15, 22, 32, 47, 69, 101, 148, 217, 318, 466, 683, 1001, 1467, 2150, 3151, 4618, 6768, 9919, 14537, 21305, 31224, 45761, 67066, 98290, 144051, 211117, 309407, 453458, 664575, 973982, 1427440, 2092015, 3065997, 4493437, 6585452, 9651449 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

From Emeric Deutsch, Feb 15 2010: (Start)

a(n) is the number of binary words of length n that have no pair of adjacent 1's and have no 0000 subwords. Example: a(4)=7 because we have 0101, 1010, 0010, 1001, 0100, 0001, and 1000.

a(n) = A171855(n,0). (End)

a(n) is the number of solus bitstrings of length n with no runs of 4 zeroes. - Steven Finch, Mar 25 2020

REFERENCES

R. K. Guy, personal communication.

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Steven Finch, Cantor-solus and Cantor-multus distributions, arXiv:2003.09458 [math.CO], 2020.

R. K. Guy, Letter to N. J. A. Sloane, Apr 1975

Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992.

Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992

Index entries for linear recurrences with constant coefficients, signature (1,0,1).

FORMULA

a(n) = a(n-1) + a(n-3) for n>3, see also A000930. - Reinhard Zumkeller, Oct 26 2005

For n>1, a(n) = 2*A000930(n) + A000930(n-2). - Gerald McGarvey, Sep 10 2008

MAPLE

G:=series((1+x)*(1+x^2)/(1-x-x^3), x=0, 42): 1, seq(coeff(G, x^n), n=1..38);

A003410:=-(1+z)*(1+z**2)/(-1+z+z**3); # Simon Plouffe in his 1992 dissertation

MATHEMATICA

Join[{1}, LinearRecurrence[{1, 0, 1}, {2, 3, 5}, 80]] (* Vladimir Joseph Stephan Orlovsky, Feb 11 2012 *)

PROG

(PARI) a(n)=([0, 1, 0; 0, 0, 1; 1, 0, 1]^n*[1; 2; 3])[1, 1] \\ Charles R Greathouse IV, Mar 25 2020

CROSSREFS

Essentially the same as A058278 and A097333, partial sums and first differences of A058278, first and second differences of itself and A038718. Equals A038718(n+1) + 1, n>0.

Cf. A171855. - Emeric Deutsch, Feb 15 2010

Sequence in context: A076972 A301756 A170877 * A018133 A261081 A116975

Adjacent sequences:  A003407 A003408 A003409 * A003411 A003412 A003413

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from Emeric Deutsch, Dec 11 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 25 16:03 EDT 2021. Contains 346291 sequences. (Running on oeis4.)