The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A003410 Expansion of (1+x)(1+x^2)/(1-x-x^3). (Formerly M0648) 15
 1, 2, 3, 5, 7, 10, 15, 22, 32, 47, 69, 101, 148, 217, 318, 466, 683, 1001, 1467, 2150, 3151, 4618, 6768, 9919, 14537, 21305, 31224, 45761, 67066, 98290, 144051, 211117, 309407, 453458, 664575, 973982, 1427440, 2092015, 3065997, 4493437, 6585452, 9651449 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS From Emeric Deutsch, Feb 15 2010: (Start) a(n) is the number of binary words of length n that have no pair of adjacent 1's and have no 0000 subwords. Example: a(4)=7 because we have 0101, 1010, 0010, 1001, 0100, 0001, and 1000. a(n) = A171855(n,0). (End) a(n) is the number of solus bitstrings of length n with no runs of 4 zeros. - Steven Finch, Mar 25 2020 REFERENCES R. K. Guy, personal communication. N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Steven Finch, Cantor-solus and Cantor-multus distributions, arXiv:2003.09458 [math.CO], 2020. R. K. Guy, Letter to N. J. A. Sloane, Apr 1975 Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009. Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992 Index entries for linear recurrences with constant coefficients, signature (1,0,1). FORMULA a(n) = a(n-1) + a(n-3) for n>3, see also A000930. - Reinhard Zumkeller, Oct 26 2005 For n>1, a(n) = 2*A000930(n) + A000930(n-2). - Gerald McGarvey, Sep 10 2008 a(n) = A058278(n+4) = A097333(n+1) for n >= 1. - Jianing Song, Aug 11 2023 MAPLE G:=series((1+x)*(1+x^2)/(1-x-x^3), x=0, 42): 1, seq(coeff(G, x^n), n=1..38); A003410:=-(1+z)*(1+z**2)/(-1+z+z**3); # Simon Plouffe in his 1992 dissertation MATHEMATICA Join[{1}, LinearRecurrence[{1, 0, 1}, {2, 3, 5}, 80]] (* Vladimir Joseph Stephan Orlovsky, Feb 11 2012 *) PROG (PARI) a(n)=([0, 1, 0; 0, 0, 1; 1, 0, 1]^n*[1; 2; 3])[1, 1] \\ Charles R Greathouse IV, Mar 25 2020 CROSSREFS Essentially the same as A058278 and A097333, partial sums and first differences of A058278, first and second differences of itself and A038718. Equals A038718(n+1) + 1, n>0. Cf. A171855. - Emeric Deutsch, Feb 15 2010 Sequence in context: A076972 A301756 A170877 * A362757 A018133 A261081 Adjacent sequences: A003407 A003408 A003409 * A003411 A003412 A003413 KEYWORD nonn,easy AUTHOR N. J. A. Sloane EXTENSIONS More terms from Emeric Deutsch, Dec 11 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 30 03:30 EDT 2024. Contains 372957 sequences. (Running on oeis4.)