login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A294150
Number of knapsack partitions of n that are also knapsack factorizations.
3
1, 1, 1, 2, 2, 4, 4, 6, 8, 10, 12, 13, 20, 20, 29, 30, 41, 41, 56, 53, 81, 75
OFFSET
1,4
COMMENTS
a(n) is the number of finite multisets of positive integers summing to n such that every distinct submultiset has a different sum, and also every distinct submultiset has a different product.
LINKS
R. Ehrenborg and M. Readdy, The Mobius function of partitions with restricted block sizes, Advances in Applied Mathematics, Volume 39, Issue 3, September 2007, Pages 283-292.
EXAMPLE
The a(12) = 13 partitions are:
(12),
(10 2), (9 3), (8 4), (7 5), (6 6),
(8 2 2), (7 3 2), (5 5 2), (5 4 3), (4 4 4),
(3 3 3 3),
(2 2 2 2 2 2).
MATHEMATICA
nn=22;
dubQ[y_]:=And[UnsameQ@@Times@@@Union[Rest@Subsets[y]], UnsameQ@@Plus@@@Union[Rest@Subsets[y]]];
Table[Length@Select[IntegerPartitions[n], dubQ], {n, nn}]
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Oct 23 2017
STATUS
approved