login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A294149
Numbers k such that the sum of divisors of k is divisible by the sum of nontrivial divisors of k (that is, excluding 1 and k).
1
15, 20, 35, 95, 104, 119, 143, 207, 209, 287, 319, 323, 377, 464, 527, 559, 650, 779, 899, 923, 989, 1007, 1023, 1189, 1199, 1343, 1349, 1519, 1763, 1919, 1952, 2015, 2159, 2507, 2759, 2911, 2915, 2975, 3239, 3599, 3827, 4031, 4199, 4607, 5183, 5207, 5249
OFFSET
1,1
COMMENTS
Numbers k such that sigma(k)/(sigma(k)-k-1) is a positive integer.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
FORMULA
This sequence gives all numbers a(n) in increasing order which satisfy A000203(a(n))/A048050(a(n)) = A000203(a(n))/(A000203(a(n)) - (a(n)+1)) = k(n), with a positive integer k(n) for n >= 1. - Wolfdieter Lang, Nov 10 2017
EXAMPLE
15 is in the sequence since sigma(15)/(sigma(15)-15-1) = 24/8 = 3.
MATHEMATICA
Quiet@ Select[Range[2, 5300], And[IntegerQ[#], # > 1] &[#2/(#2 - #1 - 1)] & @@ {#, DivisorSigma[1, #]} &] (* Michael De Vlieger, Oct 24 2017 *)
PROG
(PARI) lista(nn) = forcomposite(n=1, nn, if (denominator(sigma(n)/(sigma(n)-n-1)) == 1, print1(n, ", "))); \\ Michel Marcus, Oct 24 2017
(PARI) list(lim)=my(v=List(), s, t); forfactored(n=9, lim\1, s=sigma(n); t=s-n[1]-1; if(t && s%t==0, listput(v, n[1]))); Vec(v) \\ Charles R Greathouse IV, Nov 11 2017
CROSSREFS
Subsequence of A002808 (composite numbers).
Cf. A088831 (k=2), A063906 (k=3).
Sequence in context: A111200 A088494 A109659 * A065148 A093028 A105506
KEYWORD
nonn
AUTHOR
Zdenek Cervenka, Oct 23 2017
EXTENSIONS
Edited by Wolfdieter Lang, Nov 10 2017
Name corrected by Michel Marcus, Nov 12 2017
STATUS
approved