login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A063906
Numbers m such that m = 2*sigma(m)/3 - 1.
6
15, 207, 1023, 2975, 19359, 147455, 1207359, 5017599, 2170814463, 58946212863
OFFSET
1,1
COMMENTS
Original title: numbers n such that t(n) = s(n), where s(n) = sigma(n)-n-1 and t(n) = |s(n)-n|+1.
From Robert Israel, Jan 12 2016: (Start)
All terms are odd and satisfy A009194(m) = 1 or 3.
Includes 3^(k-1)*(3^k-4) for k in A058959.
The first few terms of this form are 15, 207, 19359, 36472996363223648799.
Other terms include 3^15*43048567*1003302465131 = 619739816695811335405066239 and 3^15*43049011*808868950607 = 499643410492503517919703039. (End)
a(11) > 10^12. - Giovanni Resta, Apr 14 2016
In other words, numbers m such that sigma(m)/(m+1) = 3/2. - Michel Marcus, Jan 03 2023
LINKS
Antal Bege and Kinga Fogarasi, Generalized perfect numbers, Acta Univ. Sapientiae, Math., 1 (2009), 73-82.
EXAMPLE
sigma(1207359) = 1811040; 1811040 - 1207359 - 1 = 603680; abs(603680 - 1207359) + 1 = 603680.
MAPLE
select(n -> numtheory:-sigma(n) = 3/2*(n+1), [seq(i, i=1..10^6, 2)]); # Robert Israel, Jan 12 2016
MATHEMATICA
Select[Range[10^6], 2 * DivisorSigma[1, #]/3 - 1 == # &] (* Giovanni Resta, Apr 14 2016 *)
PROG
(PARI) s(n) = sigma(n)-n-1;
t(n) = abs(s(n)-n)+1;
for(n=1, 10^8, if(t(n)==s(n), print1(n, ", ")))
(ARIBAS): for n := 1 to 4000000 do s := sigma(n) - n - 1; t := abs(s - n) + 1; if s = t then write(n, " "); end; end;
(Magma) [n: n in [1..6*10^6] | 2*DivisorSigma(1, n)/3-1 eq n]; // Vincenzo Librandi, Oct 10 2017
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Jason Earls, Aug 30 2001
EXTENSIONS
More terms from Klaus Brockhaus, Sep 01 2001
a(9)-a(10) from Giovanni Resta, Apr 14 2016
Simpler title suggested by Giovanni Resta, Apr 14 2016, based on formula provided by Paolo P. Lava, Jan 12 2016
STATUS
approved