login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers m such that m = 2*sigma(m)/3 - 1.
6

%I #52 Jan 03 2023 09:23:51

%S 15,207,1023,2975,19359,147455,1207359,5017599,2170814463,58946212863

%N Numbers m such that m = 2*sigma(m)/3 - 1.

%C Original title: numbers n such that t(n) = s(n), where s(n) = sigma(n)-n-1 and t(n) = |s(n)-n|+1.

%C From _Robert Israel_, Jan 12 2016: (Start)

%C All terms are odd and satisfy A009194(m) = 1 or 3.

%C Includes 3^(k-1)*(3^k-4) for k in A058959.

%C The first few terms of this form are 15, 207, 19359, 36472996363223648799.

%C Other terms include 3^15*43048567*1003302465131 = 619739816695811335405066239 and 3^15*43049011*808868950607 = 499643410492503517919703039. (End)

%C a(11) > 10^12. - _Giovanni Resta_, Apr 14 2016

%C In other words, numbers m such that sigma(m)/(m+1) = 3/2. - _Michel Marcus_, Jan 03 2023

%H Antal Bege and Kinga Fogarasi, <a href="http://www.acta.sapientia.ro/acta-math/C1-1/MATH1-6.PDF">Generalized perfect numbers</a>, Acta Univ. Sapientiae, Math., 1 (2009), 73-82.

%e sigma(1207359) = 1811040; 1811040 - 1207359 - 1 = 603680; abs(603680 - 1207359) + 1 = 603680.

%p select(n -> numtheory:-sigma(n) = 3/2*(n+1), [seq(i,i=1..10^6,2)]); # _Robert Israel_, Jan 12 2016

%t Select[Range[10^6], 2 * DivisorSigma[1, #]/3 - 1 == # &] (* _Giovanni Resta_, Apr 14 2016 *)

%o (PARI) s(n) = sigma(n)-n-1;

%o t(n) = abs(s(n)-n)+1;

%o for(n=1,10^8, if(t(n)==s(n),print1(n, ", ")))

%o (ARIBAS): for n := 1 to 4000000 do s := sigma(n) - n - 1; t := abs(s - n) + 1; if s = t then write(n," "); end; end;

%o (Magma) [n: n in [1..6*10^6] | 2*DivisorSigma(1,n)/3-1 eq n]; // _Vincenzo Librandi_, Oct 10 2017

%Y Cf. A000203, A009194, A014567, A058959.

%K nonn,more

%O 1,1

%A _Jason Earls_, Aug 30 2001

%E More terms from _Klaus Brockhaus_, Sep 01 2001

%E a(9)-a(10) from _Giovanni Resta_, Apr 14 2016

%E Simpler title suggested by _Giovanni Resta_, Apr 14 2016, based on formula provided by _Paolo P. Lava_, Jan 12 2016